期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of sintering temperature on the physical properties and electrical contact properties of doped AgSnO_2 contact materials 被引量:7
1
作者 Hai-tao wang Zi-xiang wang +2 位作者 Lian-zheng wang jing-qin wang Yan-cai Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第11期1275-1285,共11页
AgSnO_ 2 electrical contact materials doped with Bi_2O_3,La_2O_3,and TiO_2 were successfully fabricated by the powder metallurgy method under different initial sintering temperatures.The electrical conductivity,densit... AgSnO_ 2 electrical contact materials doped with Bi_2O_3,La_2O_3,and TiO_2 were successfully fabricated by the powder metallurgy method under different initial sintering temperatures.The electrical conductivity,density,hardness,and contact resistance of the Ag Sn O_2/Bi_2O_3,AgSnO_2/La_2O_3,and AgSnO_2/Ti O_2 contact materials were measured and analyzed.The arc-eroded surface morphologies of the doped AgSnO_2 contact materials were investigated by scanning electron microscopy(SEM).The effects of the initial sintering temperature on the physical properties and electrical contact properties of the doped AgSnO_2 contact materials were discussed.The results indicate that the physical properties can be improved and the contact resistance of the AgSnO_2 contact materials can be substantially reduced when the materials are sintered under their optimal initial sintering temperatures. 展开更多
关键词 SINTERING TEMPERATURE CONTACT materials PHYSICAL PROPERTIES electrical CONTACT PROPERTIES
下载PDF
Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
2
作者 Tie Li Jun-Wei Li +3 位作者 Chun-Li Pang Hailong An Yi-Zhao Geng jing-qin wang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第9期574-580,共7页
Transient receptor potential vanilloid subtype 1 (TRPV1) is a polymodel sensory receptor and can be activated by moderate temperature (≥ 43 ℃). Though extensive researches on the heat-activation mechanism revealed s... Transient receptor potential vanilloid subtype 1 (TRPV1) is a polymodel sensory receptor and can be activated by moderate temperature (≥ 43 ℃). Though extensive researches on the heat-activation mechanism revealed some key elements that participate in the heat-sensation pathway, the detailed thermal-gating mechanism of TRPV1 is still unclear. We investigate the heat-activation process of TRPV1 channel using the molecular dynamics simulation method at different temperatures. It is found that the favored state of the supposed upper gate of TRPV1 cannot form constriction to ion permeation. Oscillation of S5 helix originated from thermal fluctuation and forming/breaking of two key hydrogen bonds can transmit to S6 helix through the hydrophobic contact between S5 and S6 helix. We propose that this is the pathway from heat sensor of TRPV1 to the opening of the lower gate. The heat-activation mechanism of TRPV1 presented in this work can help further functional study of TRPV1 channel. 展开更多
关键词 TRPV1 heat-activation mechanism molecular dynamics simulation hydrogen bond GATING
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部