In our relevant paper[Zhao S X(2021)Chin.Phys.B 30055201],a delta distribution of negative ions is given by fluid simulation and preliminarily explained by decomposed anions transport equation.In the present work,firs...In our relevant paper[Zhao S X(2021)Chin.Phys.B 30055201],a delta distribution of negative ions is given by fluid simulation and preliminarily explained by decomposed anions transport equation.In the present work,first,the intrinsic connection between the electropositive plasma transport equation and spring oscillator dynamic equation is established.Inspired by this similarity,reformed“spring oscillator”equation with dispersing instead of restoring force that gives quasi-delta solution is devised according to the math embodied in the anion equation,which is of potential significance to the disciplines of atomic physics and astronomy as well.For solving the“diffusion confusion”the physics that determines the delta profile within the continuity equation is explored on the basis that recombination loss source term plays the role of drift flux,which is applicable for fluid model of low temperature plasma,but not the ordinary fluid dynamics.Besides,the math and physics revealed in this work predict that the ratio of recombination or attachment(for electrons)frequency versus the species diffusion coefficient is a very important parameter in determining the delta distribution,as it acts as the acceleration of object,according to the reformed oscillator equation.With this theory,the analogous delta profile of electrons density in the famous drift and ambi-polar diffusion heating mechanism of electronegative capacitively coupled plasma is interpreted.展开更多
Sodium manganese hexacyanoferrate(NaMnHCF)is a promising cathode material for sodiumion batteries(SIBs)due to its low cost and high energy density.The Jahn-Teller effect of Mn,however,leads to the poor structural stab...Sodium manganese hexacyanoferrate(NaMnHCF)is a promising cathode material for sodiumion batteries(SIBs)due to its low cost and high energy density.The Jahn-Teller effect of Mn,however,leads to the poor structural stability of NaMnHCF,resulting in undesired electrochemical performance.Herein,we developed a novel coating strategy and obtained a coreshell structured NaMnHCF through facile Na^(+)-Cs^(+)ion exchange,which naturally produced a robust and insoluble Cs-rich surface layer(CsMnHCF)with several nanometers in thickness on pristine NaMnHCF.It is shown that the Csrich surface plays a positive role in the stability of the NaMnHCF structure by prohibiting the leakage of crystal water,stabilizing the solid-liquid interfaces,and solidifying crystal structure.The electrochemical performance of the core-shell NaMnHCF is dramatically improved with a discharge capacity of 76.3 mAh·g^(-1)after 1000 cycles at 1.0 C and a reversible capacity of 87.0 mAh·g^(-1)at 10.0 C,which is much superior to that of the pristine NaMnHCF with only 26.6 mAh·g^(-1)after 400 cycles and 31 mAh·g^(-1)at 10.0 C.This work reports a new method for the synthesis of core-shell NaMnHCF and provides a novel perspective for the development of advanced NaMnHCF cathode for SIBs.展开更多
文摘In our relevant paper[Zhao S X(2021)Chin.Phys.B 30055201],a delta distribution of negative ions is given by fluid simulation and preliminarily explained by decomposed anions transport equation.In the present work,first,the intrinsic connection between the electropositive plasma transport equation and spring oscillator dynamic equation is established.Inspired by this similarity,reformed“spring oscillator”equation with dispersing instead of restoring force that gives quasi-delta solution is devised according to the math embodied in the anion equation,which is of potential significance to the disciplines of atomic physics and astronomy as well.For solving the“diffusion confusion”the physics that determines the delta profile within the continuity equation is explored on the basis that recombination loss source term plays the role of drift flux,which is applicable for fluid model of low temperature plasma,but not the ordinary fluid dynamics.Besides,the math and physics revealed in this work predict that the ratio of recombination or attachment(for electrons)frequency versus the species diffusion coefficient is a very important parameter in determining the delta distribution,as it acts as the acceleration of object,according to the reformed oscillator equation.With this theory,the analogous delta profile of electrons density in the famous drift and ambi-polar diffusion heating mechanism of electronegative capacitively coupled plasma is interpreted.
基金financially supported by the National Natural Science Foundation of China(Nos.52172184 and 51763022)the Fundamental Research Funds for the Central Universities(No.ZYGX2019J024)。
文摘Sodium manganese hexacyanoferrate(NaMnHCF)is a promising cathode material for sodiumion batteries(SIBs)due to its low cost and high energy density.The Jahn-Teller effect of Mn,however,leads to the poor structural stability of NaMnHCF,resulting in undesired electrochemical performance.Herein,we developed a novel coating strategy and obtained a coreshell structured NaMnHCF through facile Na^(+)-Cs^(+)ion exchange,which naturally produced a robust and insoluble Cs-rich surface layer(CsMnHCF)with several nanometers in thickness on pristine NaMnHCF.It is shown that the Csrich surface plays a positive role in the stability of the NaMnHCF structure by prohibiting the leakage of crystal water,stabilizing the solid-liquid interfaces,and solidifying crystal structure.The electrochemical performance of the core-shell NaMnHCF is dramatically improved with a discharge capacity of 76.3 mAh·g^(-1)after 1000 cycles at 1.0 C and a reversible capacity of 87.0 mAh·g^(-1)at 10.0 C,which is much superior to that of the pristine NaMnHCF with only 26.6 mAh·g^(-1)after 400 cycles and 31 mAh·g^(-1)at 10.0 C.This work reports a new method for the synthesis of core-shell NaMnHCF and provides a novel perspective for the development of advanced NaMnHCF cathode for SIBs.