期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Friction behavior of Ti-30Fe composites strengthened by TiC particles 被引量:3
1
作者 Sheng-hang XU jing-wen qiu +3 位作者 Hui-bin ZHANG Hua-zhen CAO Guo-qu ZHENG Yong LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第4期988-998,共11页
Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and... Ti-Fe-x TiC(x=0, 3, 6, 9, wt.%) composites were fabricated through low temperature ball milling of Ti, Fe and TiC powders, followed by spark plasma sintering. The results show that β-Ti, β-Ti-Fe, η-Ti4 Fe2 O0.4 and TiC particles can be found in the composites. The microstructure can be obviously refined with increasing the content of TiC particles. The coefficient of friction(COF) decreases and the hardness increases with increasing the content of TiC particles. The adhesive wear is the dominant wear mechanism of all the Ti-Fe-x TiC composites. The Ti-Fe-6 TiC composite shows the best wear resistance, owing to the small size and high content of TiC particle as well as relatively fine microstructure. The wear rate of the Ti-Fe-6 TiC composite is as low as 1.869× 10-5 mm3/(N·m) and the COF is only 0.64. Therefore, TiC particle reinforced Ti-Fe based composites may be utilized as potential wear resistant materials. 展开更多
关键词 TiC particle Ti-Fe based composite powder metallurgy microstructure friction behavior
下载PDF
Effect of Al and Sc on deformation behavior of FeCoNi multi-element alloys
2
作者 Rui ZHOU Mou LI +4 位作者 jing-wen qiu Si-hui OUYANG Di PAN Cheng-shang ZHOU Yong LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第10期2109-2116,共8页
The effects of Al and Sc on mechanical properties of FeCoNi multi-element alloys(MEAs) were investigated by compressive tests. The microstructures of FeCoNi MEAs with different contents of Al and Sc were characterized... The effects of Al and Sc on mechanical properties of FeCoNi multi-element alloys(MEAs) were investigated by compressive tests. The microstructures of FeCoNi MEAs with different contents of Al and Sc were characterized and the strengthening mechanisms were discussed. The results show that FeCoNi MEA with a low content of Al has a face-centered cubic(FCC) structure. The yield strength increases linearly with the increase of Al content, which is largely caused by solid solution hardening. Further addition of Sc can promote the formation of a new phase in(FeCoNi)1-xAlx MEAs. A minor addition of Sc can significantly increase the yield strengths of(FeCoNi)1-xAlx MEAs with a low Al content and improve the compressive plasticity of(FeCoNi)1-xAlx MEAs with a high Al content. 展开更多
关键词 FeCoNi multi-element alloys mechanical properties MICROSTRUCTURE strengthening mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部