In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical ...In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical professionals.To address this problem,the authors propose a robust feature watermarking algorithm for encrypted medical images based on multi-stage discrete wavelet transform(DWT),Daisy descriptor,and discrete cosine transform(DCT).The algorithm initially encrypts the original medical image through DWT-DCT and Logistic mapping.Subsequently,a 3-stage DWT transformation is applied to the encrypted medical image,with the centre point of the LL3 sub-band within its low-frequency component serving as the sampling point.The Daisy descriptor matrix for this point is then computed.Finally,a DCT transformation is performed on the Daisy descriptor matrix,and the low-frequency portion is processed using the perceptual hashing algorithm to generate a 32-bit binary feature vector for the medical image.This scheme utilises cryptographic knowledge and zero-watermarking technique to embed watermarks without modifying medical images and can extract the watermark from test images without the original image,which meets the basic re-quirements of medical image watermarking.The embedding and extraction of water-marks are accomplished in a mere 0.160 and 0.411s,respectively,with minimal computational overhead.Simulation results demonstrate the robustness of the algorithm against both conventional attacks and geometric attacks,with a notable performance in resisting rotation attacks.展开更多
Medical images are used as a diagnostic tool, so protecting theirconfidentiality has long been a topic of study. From this, we propose aResnet50-DCT-based zero watermarking algorithm for use with medicalimages. To beg...Medical images are used as a diagnostic tool, so protecting theirconfidentiality has long been a topic of study. From this, we propose aResnet50-DCT-based zero watermarking algorithm for use with medicalimages. To begin, we use Resnet50, a pre-training network, to draw out thedeep features of medical images. Then the deep features are transformedby DCT transform and the perceptual hash function is used to generatethe feature vector. The original watermark is chaotic scrambled to get theencrypted watermark, and the watermark information is embedded into theoriginal medical image by XOR operation, and the logical key vector isobtained and saved at the same time. Similarly, the same feature extractionmethod is used to extract the deep features of the medical image to be testedand generate the feature vector. Later, the XOR operation is carried outbetween the feature vector and the logical key vector, and the encryptedwatermark is extracted and decrypted to get the restored watermark;thenormalized correlation coefficient (NC) of the original watermark and therestored watermark is calculated to determine the ownership and watermarkinformation of the medical image to be tested. After calculation, most ofthe NC values are greater than 0.50. The experimental results demonstratethe algorithm’s robustness, invisibility, and security, as well as its ability toaccurately extract watermark information. The algorithm also shows goodresistance to conventional attacks and geometric attacks.展开更多
The field of medical images has been rapidly evolving since the advent of the digital medical information era.However,medical data is susceptible to leaks and hacks during transmission.This paper proposed a robust mul...The field of medical images has been rapidly evolving since the advent of the digital medical information era.However,medical data is susceptible to leaks and hacks during transmission.This paper proposed a robust multi-watermarking algorithm for medical images based on GoogLeNet transfer learning to protect the privacy of patient data during transmission and storage,as well as to increase the resistance to geometric attacks and the capacity of embedded watermarks of watermarking algorithms.First,a pre-trained GoogLeNet network is used in this paper,based on which the parameters of several previous layers of the network are fixed and the network is fine-tuned for the constructed medical dataset,so that the pre-trained network can further learn the deep convolutional features in the medical dataset,and then the trained network is used to extract the stable feature vectors of medical images.Then,a two-dimensional Henon chaos encryption technique,which is more sensitive to initial values,is used to encrypt multiple different types of watermarked private information.Finally,the feature vector of the image is logically operated with the encrypted multiple watermark information,and the obtained key is stored in a third party,thus achieving zero watermark embedding and blind extraction.The experimental results confirmthe robustness of the algorithm from the perspective ofmultiple types of watermarks,while also demonstrating the successful embedding ofmultiple watermarks for medical images,and show that the algorithm is more resistant to geometric attacks than some conventional watermarking algorithms.展开更多
With the development of digitalization in healthcare,more and more information is delivered and stored in digital form,facilitating people’s lives significantly.In the meanwhile,privacy leakage and security issues co...With the development of digitalization in healthcare,more and more information is delivered and stored in digital form,facilitating people’s lives significantly.In the meanwhile,privacy leakage and security issues come along with it.Zero watermarking can solve this problem well.To protect the security of medical information and improve the algorithm’s robustness,this paper proposes a robust watermarking algorithm for medical images based on Non-Subsampled Shearlet Transform(NSST)and Schur decomposition.Firstly,the low-frequency subband image of the original medical image is obtained by NSST and chunked.Secondly,the Schur decomposition of low-frequency blocks to get stable values,extracting the maximum absolute value of the diagonal elements of the upper triangle matrix after the Schur decom-position of each low-frequency block and constructing the transition matrix from it.Then,the mean of the matrix is compared to each element’s value,creating a feature matrix by combining perceptual hashing,and selecting 32 bits as the feature sequence.Finally,the feature vector is exclusive OR(XOR)operated with the encrypted watermark information to get the zero watermark and complete registration with a third-party copyright certification center.Experimental data show that the Normalized Correlation(NC)values of watermarks extracted in random carrier medical images are above 0.5,with higher robustness than traditional algorithms,especially against geometric attacks and achieve watermark information invisibility without altering the carrier medical image.展开更多
Medical images are a critical component of the diagnostic process for clinicians.Although the quality of medical photographs is essential to the accuracy of a physician’s diagnosis,they must be encrypted due to the c...Medical images are a critical component of the diagnostic process for clinicians.Although the quality of medical photographs is essential to the accuracy of a physician’s diagnosis,they must be encrypted due to the characteristics of digital storage and information leakage associated with medical images.Traditional watermark embedding algorithm embeds the watermark information into the medical image,which reduces the quality of the medical image and affects the physicians’judgment of patient diagnosis.In addition,watermarks in this method have weak robustness under high-intensity geometric attacks when the medical image is attacked and the watermarks are destroyed.This paper proposes a novel watermarking algorithm using the convolutional neural networks(CNN)Inception V3 and the discrete cosine transform(DCT)to address above mentioned problems.First,the medical image is input into the Inception V3 network,which has been structured by adjusting parameters,such as the size of the convolution kernels and the typical architecture of the convolution modules.Second,the coefficients extracted from the fully connected layer of the network are transformed by DCT to obtain the feature vector of the medical image.At last,the watermarks are encrypted using the logistic map system and hash function,and the keys are stored by a third party.The encrypted watermarks and the original image features are performed logical operations to realize the embedding of zero-watermark.In the experimental section,multiple watermarking schemes using three different types of watermarks were implemented to verify the effectiveness of the three proposed algorithms.Our NC values for all the images are more than 90%accurate which shows the robustness of the algorithm.Extensive experimental results demonstrate the robustness under both conventional and high-intensity geometric attacks of the proposed algorithm.展开更多
The amount of 3D data stored and transmitted in the Internet of Medical Things(IoMT)is increasing,making protecting these medical data increasingly prominent.However,there are relatively few researches on 3D data wate...The amount of 3D data stored and transmitted in the Internet of Medical Things(IoMT)is increasing,making protecting these medical data increasingly prominent.However,there are relatively few researches on 3D data watermarking.Moreover,due to the particularity of medical data,strict data quality should be considered while protecting data security.To solve the problem,in the field of medical volume data,we proposed a robust watermarking algorithm based on Polar Cosine Transform and 3D-Discrete Cosine Transform(PCT and 3D-DCT).Each slice of the volume data was transformed by PCT to obtain feature row vector,and then the reshaped three-dimensional feature matrix was transformed by 3D-DCT.Based on the contour information of the volume data and the detail information of the inner slice,the visual feature vector was obtained by applying the per-ceptual hash.In addition,the watermark was encrypted by a multi-sensitive initial value Sine and Piecewise linear chaotic Mapping(SPM)system,and embedded as a zero watermark.The key was stored in a third party.Under the same experimental conditions,when the volume data is rotated by 80 degrees,cut 25%along the Z axis,and the JPEG compression quality is 1%,the Normalized Correlation Coefficient(NC)of the extracted watermark is 0.80,0.89,and 1.00 respectively,which are significantly higher than the comparison algorithm.展开更多
Remote medical diagnosis can be realized by using the Internet,but when transmitting medical images of patients through the Internet,personal information of patients may be leaked.Aim at the security of medical inform...Remote medical diagnosis can be realized by using the Internet,but when transmitting medical images of patients through the Internet,personal information of patients may be leaked.Aim at the security of medical information system and the protection of medical images,a novel robust zero-watermarking based on SIFT-DCT(Scale Invariant Feature Transform-Discrete Cosine Transform)for medical images in the encrypted domain is proposed.Firstly,the original medical image is encrypted in transform domain based on Logistic chaotic sequence to enhance the concealment of original medical images.Then,the SIFT-DCT is used to extract the feature sequences of encrypted medical images.Next,zero-watermarking technology is used to ensure that the region of interest of medical images are not changed.Finally,the robust of the algorithm is evaluated by the correlation coefficient between the original watermark and the attacked watermark.A series of attack experiments are carried out on this method,and the results show that the algorithm is not only secure,but also robust to both traditional and geometric attacks,especially in clipping attacks.展开更多
In order to solve the problem of patient information security protection in medical images,whilst also taking into consideration the unchangeable particularity of medical images to the lesion area and the need for med...In order to solve the problem of patient information security protection in medical images,whilst also taking into consideration the unchangeable particularity of medical images to the lesion area and the need for medical images themselves to be protected,a novel robust watermarking algorithm for encrypted medical images based on dual-tree complex wavelet transform and discrete cosine transform(DTCWT-DCT)and chaotic map is proposed in this paper.First,DTCWT-DCT transformation was performed on medical images,and dot product was per-formed in relation to the transformation matrix and logistic map.Inverse transformation was undertaken to obtain encrypted medical images.Then,in the low-frequency part of the DTCWT-DCT transformation coefficient of the encrypted medical image,a set of 32 bits visual feature vectors that can effectively resist geometric attacks are found to be the feature vector of the encrypted medical image by using perceptual hashing.After that,different logistic initial values and growth parameters were set to encrypt the watermark,and zero-watermark technology was used to embed and extract the encrypted medical images by combining cryptography and third-party concepts.The proposed watermarking algorithm does not change the region of interest of medical images thus it does not affect the judgment of doctors.Additionally,the security of the algorithm is enhanced by using chaotic mapping,which is sensitive to the initial value in order to encrypt the medical image and the watermark.The simulation results show that the pro-posed algorithm has good homomorphism,which can not only protect the original medical image and the watermark information,but can also embed and extract the watermark directly in the encrypted image,eliminating the potential risk of decrypting the embedded watermark and extracting watermark.Compared with the recent related research,the proposed algorithm solves the contradiction between robustness and invisibility of the watermarking algorithm for encrypted medical images,and it has good results against both conventional attacks and geometric attacks.Under geometric attacks in particular,the proposed algorithm performs much better than existing algorithms.展开更多
Recent applications of convolutional neural networks(CNNs)in single image super-resolution(SISR)have achieved unprecedented performance.However,existing CNN-based SISR network structure design consider mostly only cha...Recent applications of convolutional neural networks(CNNs)in single image super-resolution(SISR)have achieved unprecedented performance.However,existing CNN-based SISR network structure design consider mostly only channel or spatial information,and cannot make full use of both channel and spatial information to improve SISR performance further.The present work addresses this problem by proposing a mixed attention densely residual network architecture that can make full and simultaneous use of both channel and spatial information.Specifically,we propose a residual in dense network structure composed of dense connections between multiple dense residual groups to form a very deep network.This structure allows each dense residual group to apply a local residual skip connection and enables the cascading of multiple residual blocks to reuse previous features.A mixed attention module is inserted into each dense residual group,to enable the algorithm to fuse channel attention with laplacian spatial attention effectively,and thereby more adaptively focus on valuable feature learning.The qualitative and quantitative results of extensive experiments have demonstrate that the proposed method has a comparable performance with other stateof-the-art methods.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:62063004,62350410483Key Research and Development Project of Hainan Province,Grant/Award Number:ZDYF2021SHFZ093Zhejiang Provincial Postdoctoral Science Foundation,Grant/Award Number:ZJ2021028。
文摘In the intricate network environment,the secure transmission of medical images faces challenges such as information leakage and malicious tampering,significantly impacting the accuracy of disease diagnoses by medical professionals.To address this problem,the authors propose a robust feature watermarking algorithm for encrypted medical images based on multi-stage discrete wavelet transform(DWT),Daisy descriptor,and discrete cosine transform(DCT).The algorithm initially encrypts the original medical image through DWT-DCT and Logistic mapping.Subsequently,a 3-stage DWT transformation is applied to the encrypted medical image,with the centre point of the LL3 sub-band within its low-frequency component serving as the sampling point.The Daisy descriptor matrix for this point is then computed.Finally,a DCT transformation is performed on the Daisy descriptor matrix,and the low-frequency portion is processed using the perceptual hashing algorithm to generate a 32-bit binary feature vector for the medical image.This scheme utilises cryptographic knowledge and zero-watermarking technique to embed watermarks without modifying medical images and can extract the watermark from test images without the original image,which meets the basic re-quirements of medical image watermarking.The embedding and extraction of water-marks are accomplished in a mere 0.160 and 0.411s,respectively,with minimal computational overhead.Simulation results demonstrate the robustness of the algorithm against both conventional attacks and geometric attacks,with a notable performance in resisting rotation attacks.
基金supported in part by the Natural Science Foundation of China under Grants 62063004the Key Research Project of Hainan Province under Grant ZDYF2021SHFZ093+1 种基金the Hainan Provincial Natural Science Foundation of China under Grants 2019RC018 and 619QN246the postdoctor research from Zhejiang Province under Grant ZJ2021028.
文摘Medical images are used as a diagnostic tool, so protecting theirconfidentiality has long been a topic of study. From this, we propose aResnet50-DCT-based zero watermarking algorithm for use with medicalimages. To begin, we use Resnet50, a pre-training network, to draw out thedeep features of medical images. Then the deep features are transformedby DCT transform and the perceptual hash function is used to generatethe feature vector. The original watermark is chaotic scrambled to get theencrypted watermark, and the watermark information is embedded into theoriginal medical image by XOR operation, and the logical key vector isobtained and saved at the same time. Similarly, the same feature extractionmethod is used to extract the deep features of the medical image to be testedand generate the feature vector. Later, the XOR operation is carried outbetween the feature vector and the logical key vector, and the encryptedwatermark is extracted and decrypted to get the restored watermark;thenormalized correlation coefficient (NC) of the original watermark and therestored watermark is calculated to determine the ownership and watermarkinformation of the medical image to be tested. After calculation, most ofthe NC values are greater than 0.50. The experimental results demonstratethe algorithm’s robustness, invisibility, and security, as well as its ability toaccurately extract watermark information. The algorithm also shows goodresistance to conventional attacks and geometric attacks.
基金supported in part by the Natural Science Foundation of China under Grants 62063004the Key Research Project of Hainan Province under Grant ZDYF2021SHF Z093+1 种基金the Hainan Provincial Natural Science Foundation of China under Grants 2019RC018 and 619QN246the postdoctor research from Zhejiang Province under Grant ZJ2021028.
文摘The field of medical images has been rapidly evolving since the advent of the digital medical information era.However,medical data is susceptible to leaks and hacks during transmission.This paper proposed a robust multi-watermarking algorithm for medical images based on GoogLeNet transfer learning to protect the privacy of patient data during transmission and storage,as well as to increase the resistance to geometric attacks and the capacity of embedded watermarks of watermarking algorithms.First,a pre-trained GoogLeNet network is used in this paper,based on which the parameters of several previous layers of the network are fixed and the network is fine-tuned for the constructed medical dataset,so that the pre-trained network can further learn the deep convolutional features in the medical dataset,and then the trained network is used to extract the stable feature vectors of medical images.Then,a two-dimensional Henon chaos encryption technique,which is more sensitive to initial values,is used to encrypt multiple different types of watermarked private information.Finally,the feature vector of the image is logically operated with the encrypted multiple watermark information,and the obtained key is stored in a third party,thus achieving zero watermark embedding and blind extraction.The experimental results confirmthe robustness of the algorithm from the perspective ofmultiple types of watermarks,while also demonstrating the successful embedding ofmultiple watermarks for medical images,and show that the algorithm is more resistant to geometric attacks than some conventional watermarking algorithms.
基金supported in part by the Natural Science Foundation of China under Grants 62063004the Key Research Project of Hainan Province under Grant ZDYF2021SHFZ093+1 种基金the Hainan Provincial Natural Science Foundation of China under Grants 2019RC018 and 619QN246the postdoctoral research from Zhejiang Province under Grant ZJ2021028.
文摘With the development of digitalization in healthcare,more and more information is delivered and stored in digital form,facilitating people’s lives significantly.In the meanwhile,privacy leakage and security issues come along with it.Zero watermarking can solve this problem well.To protect the security of medical information and improve the algorithm’s robustness,this paper proposes a robust watermarking algorithm for medical images based on Non-Subsampled Shearlet Transform(NSST)and Schur decomposition.Firstly,the low-frequency subband image of the original medical image is obtained by NSST and chunked.Secondly,the Schur decomposition of low-frequency blocks to get stable values,extracting the maximum absolute value of the diagonal elements of the upper triangle matrix after the Schur decom-position of each low-frequency block and constructing the transition matrix from it.Then,the mean of the matrix is compared to each element’s value,creating a feature matrix by combining perceptual hashing,and selecting 32 bits as the feature sequence.Finally,the feature vector is exclusive OR(XOR)operated with the encrypted watermark information to get the zero watermark and complete registration with a third-party copyright certification center.Experimental data show that the Normalized Correlation(NC)values of watermarks extracted in random carrier medical images are above 0.5,with higher robustness than traditional algorithms,especially against geometric attacks and achieve watermark information invisibility without altering the carrier medical image.
基金supported in part by Key Research Project of Hainan Province under Grant ZDYF2021SHFZ093the Natural Science Foundation of China under Grants 62063004 and 62162022+2 种基金the Hainan Provincial Natural Science Foundation of China under Grants 2019RC018,521QN206 and 619QN249the Major Scientific Project of Zhejiang Lab 2020ND8AD01the Scientific Research Foundation for Hainan University(No.KYQD(ZR)-21013).
文摘Medical images are a critical component of the diagnostic process for clinicians.Although the quality of medical photographs is essential to the accuracy of a physician’s diagnosis,they must be encrypted due to the characteristics of digital storage and information leakage associated with medical images.Traditional watermark embedding algorithm embeds the watermark information into the medical image,which reduces the quality of the medical image and affects the physicians’judgment of patient diagnosis.In addition,watermarks in this method have weak robustness under high-intensity geometric attacks when the medical image is attacked and the watermarks are destroyed.This paper proposes a novel watermarking algorithm using the convolutional neural networks(CNN)Inception V3 and the discrete cosine transform(DCT)to address above mentioned problems.First,the medical image is input into the Inception V3 network,which has been structured by adjusting parameters,such as the size of the convolution kernels and the typical architecture of the convolution modules.Second,the coefficients extracted from the fully connected layer of the network are transformed by DCT to obtain the feature vector of the medical image.At last,the watermarks are encrypted using the logistic map system and hash function,and the keys are stored by a third party.The encrypted watermarks and the original image features are performed logical operations to realize the embedding of zero-watermark.In the experimental section,multiple watermarking schemes using three different types of watermarks were implemented to verify the effectiveness of the three proposed algorithms.Our NC values for all the images are more than 90%accurate which shows the robustness of the algorithm.Extensive experimental results demonstrate the robustness under both conventional and high-intensity geometric attacks of the proposed algorithm.
基金supported in part by the Natural Science Foundation of China under Grants 62063004the Key Research Project of Hainan Province under Grant ZDYF2021SHFZ093+1 种基金the Hainan Provincial Natural Science Foundation of China under Grants 2019RC018 and 619QN246the postdoctor research from Zhejiang Province under Grant ZJ2021028.
文摘The amount of 3D data stored and transmitted in the Internet of Medical Things(IoMT)is increasing,making protecting these medical data increasingly prominent.However,there are relatively few researches on 3D data watermarking.Moreover,due to the particularity of medical data,strict data quality should be considered while protecting data security.To solve the problem,in the field of medical volume data,we proposed a robust watermarking algorithm based on Polar Cosine Transform and 3D-Discrete Cosine Transform(PCT and 3D-DCT).Each slice of the volume data was transformed by PCT to obtain feature row vector,and then the reshaped three-dimensional feature matrix was transformed by 3D-DCT.Based on the contour information of the volume data and the detail information of the inner slice,the visual feature vector was obtained by applying the per-ceptual hash.In addition,the watermark was encrypted by a multi-sensitive initial value Sine and Piecewise linear chaotic Mapping(SPM)system,and embedded as a zero watermark.The key was stored in a third party.Under the same experimental conditions,when the volume data is rotated by 80 degrees,cut 25%along the Z axis,and the JPEG compression quality is 1%,the Normalized Correlation Coefficient(NC)of the extracted watermark is 0.80,0.89,and 1.00 respectively,which are significantly higher than the comparison algorithm.
基金This work is supported by the Key Reach Project of Hainan Province[ZDYF2018129]the National Natural Science Foundation of China[61762033]+3 种基金the National Natural Science Foundation of Hainan[2018CXTD333]the Key Innovation and Entrepreneurship Project of Hainan University[Hdcxcyxm201711]the Higher Education Research Project of Hainan Province(Hnky2019-73)the Key Research Project of Haikou College of Economics[HJKZ18-01].
文摘Remote medical diagnosis can be realized by using the Internet,but when transmitting medical images of patients through the Internet,personal information of patients may be leaked.Aim at the security of medical information system and the protection of medical images,a novel robust zero-watermarking based on SIFT-DCT(Scale Invariant Feature Transform-Discrete Cosine Transform)for medical images in the encrypted domain is proposed.Firstly,the original medical image is encrypted in transform domain based on Logistic chaotic sequence to enhance the concealment of original medical images.Then,the SIFT-DCT is used to extract the feature sequences of encrypted medical images.Next,zero-watermarking technology is used to ensure that the region of interest of medical images are not changed.Finally,the robust of the algorithm is evaluated by the correlation coefficient between the original watermark and the attacked watermark.A series of attack experiments are carried out on this method,and the results show that the algorithm is not only secure,but also robust to both traditional and geometric attacks,especially in clipping attacks.
基金supported by the Key Research Project of Hainan Province[ZDYF2018129]the Higher Education Research Project of Hainan Province(Hnky2019-73)+3 种基金the National Natural Science Foundation of China[61762033]the Natural Science Foundation of Hainan[617175]the Special Scientific Research Project of Philosophy and Social Sciences of Chongqing Medical University[201703]the Key Research Project of Haikou College of Economics[HJKZ18-01].
文摘In order to solve the problem of patient information security protection in medical images,whilst also taking into consideration the unchangeable particularity of medical images to the lesion area and the need for medical images themselves to be protected,a novel robust watermarking algorithm for encrypted medical images based on dual-tree complex wavelet transform and discrete cosine transform(DTCWT-DCT)and chaotic map is proposed in this paper.First,DTCWT-DCT transformation was performed on medical images,and dot product was per-formed in relation to the transformation matrix and logistic map.Inverse transformation was undertaken to obtain encrypted medical images.Then,in the low-frequency part of the DTCWT-DCT transformation coefficient of the encrypted medical image,a set of 32 bits visual feature vectors that can effectively resist geometric attacks are found to be the feature vector of the encrypted medical image by using perceptual hashing.After that,different logistic initial values and growth parameters were set to encrypt the watermark,and zero-watermark technology was used to embed and extract the encrypted medical images by combining cryptography and third-party concepts.The proposed watermarking algorithm does not change the region of interest of medical images thus it does not affect the judgment of doctors.Additionally,the security of the algorithm is enhanced by using chaotic mapping,which is sensitive to the initial value in order to encrypt the medical image and the watermark.The simulation results show that the pro-posed algorithm has good homomorphism,which can not only protect the original medical image and the watermark information,but can also embed and extract the watermark directly in the encrypted image,eliminating the potential risk of decrypting the embedded watermark and extracting watermark.Compared with the recent related research,the proposed algorithm solves the contradiction between robustness and invisibility of the watermarking algorithm for encrypted medical images,and it has good results against both conventional attacks and geometric attacks.Under geometric attacks in particular,the proposed algorithm performs much better than existing algorithms.
基金This work was supported in part by the Natural Science Foundation of China under Grant 62063004 and 61762033in part by the Hainan Provincial Natural Science Foundation of China under Grant 2019RC018 and 619QN246by the Postdoctoral Science Foundation under Grant 2020TQ0293.
文摘Recent applications of convolutional neural networks(CNNs)in single image super-resolution(SISR)have achieved unprecedented performance.However,existing CNN-based SISR network structure design consider mostly only channel or spatial information,and cannot make full use of both channel and spatial information to improve SISR performance further.The present work addresses this problem by proposing a mixed attention densely residual network architecture that can make full and simultaneous use of both channel and spatial information.Specifically,we propose a residual in dense network structure composed of dense connections between multiple dense residual groups to form a very deep network.This structure allows each dense residual group to apply a local residual skip connection and enables the cascading of multiple residual blocks to reuse previous features.A mixed attention module is inserted into each dense residual group,to enable the algorithm to fuse channel attention with laplacian spatial attention effectively,and thereby more adaptively focus on valuable feature learning.The qualitative and quantitative results of extensive experiments have demonstrate that the proposed method has a comparable performance with other stateof-the-art methods.