Minimal residual disease(MRD)is termed as the small numbers of remnant tumor cells in a subset of patients with tumors.Liquid biopsy is increasingly used for the detection of MRD,illustrating the potential of MRD dete...Minimal residual disease(MRD)is termed as the small numbers of remnant tumor cells in a subset of patients with tumors.Liquid biopsy is increasingly used for the detection of MRD,illustrating the potential of MRD detection to provide more accurate management for cancer patients.As new techniques and algorithms have enhanced the performance of MRD detection,the approach is becoming more widely and routinely used to predict the prognosis and monitor the relapse of cancer patients.In fact,MRD detection has been shown to achieve better performance than imaging methods.On this basis,rigorous investigation of MRD detection as an integral method for guiding clinical treatment has made important advances.This review summarizes the development of MRD biomarkers,techniques,and strategies for the detection of cancer,and emphasizes the application of MRD detection in solid tumors,particularly for the guidance of clinical treatment.展开更多
Eukaryotic genomes are densely packaged into hierarchical three-dimensional(3D) structures that contain information about gene regulation and many other biological processes. With the development of imaging and sequen...Eukaryotic genomes are densely packaged into hierarchical three-dimensional(3D) structures that contain information about gene regulation and many other biological processes. With the development of imaging and sequencing-based technologies, 3D genome studies have revealed that the high-order chromatin structure is composed of hierarchical levels, including chromosome territories, A/B compartments, topologically associated domains, and chromatin loops. However, how this chromatin architecture is formed and maintained is not completely clear. In this review, we introduce experimental methods to investigate the 3D genome, review major architectural proteins that regulate 3D chromatin organization in mammalian cells, such as CTCF(CCCTC-binding factor), cohesin, lamins, and transcription factors, and discuss relevant mechanisms such as phase separation.展开更多
基金supported by National Key R&D Program of China(Nos.2021YFC2500900 and 2021YFC2501004)the Chinese Academy of Medical Sciences(CAMS)Innovation Fund for Medical Sciences(CIFMS)(Nos.2021-1-I2M-018 and 2021-I2M-1-067)Non-Profit Central Research Institute Fund of Chinese Academy of Medical Sciences(No.2022-RC310-08).
文摘Minimal residual disease(MRD)is termed as the small numbers of remnant tumor cells in a subset of patients with tumors.Liquid biopsy is increasingly used for the detection of MRD,illustrating the potential of MRD detection to provide more accurate management for cancer patients.As new techniques and algorithms have enhanced the performance of MRD detection,the approach is becoming more widely and routinely used to predict the prognosis and monitor the relapse of cancer patients.In fact,MRD detection has been shown to achieve better performance than imaging methods.On this basis,rigorous investigation of MRD detection as an integral method for guiding clinical treatment has made important advances.This review summarizes the development of MRD biomarkers,techniques,and strategies for the detection of cancer,and emphasizes the application of MRD detection in solid tumors,particularly for the guidance of clinical treatment.
基金the National Natural Science Foundation of China (NSFC) (31871266 for C.L., 21573013 and 21825401 for Y.S.)National Key Research and Development Program of China (2016YFA0100103 for C.L., 2017YFA0505302 for Y.S.)NSFC Key Research Grant 71532001 for C.L.
文摘Eukaryotic genomes are densely packaged into hierarchical three-dimensional(3D) structures that contain information about gene regulation and many other biological processes. With the development of imaging and sequencing-based technologies, 3D genome studies have revealed that the high-order chromatin structure is composed of hierarchical levels, including chromosome territories, A/B compartments, topologically associated domains, and chromatin loops. However, how this chromatin architecture is formed and maintained is not completely clear. In this review, we introduce experimental methods to investigate the 3D genome, review major architectural proteins that regulate 3D chromatin organization in mammalian cells, such as CTCF(CCCTC-binding factor), cohesin, lamins, and transcription factors, and discuss relevant mechanisms such as phase separation.