Many anuran species exhibit striking color and/or pattern polymorphisms. We sampled 599 adult rice frogs, Fejervarya multistriata, from a rice paddy in the periphery of the Lingnan Nature Reserve (Huangshan, Anhui)....Many anuran species exhibit striking color and/or pattern polymorphisms. We sampled 599 adult rice frogs, Fejervarya multistriata, from a rice paddy in the periphery of the Lingnan Nature Reserve (Huangshan, Anhui). We recognized ten morphs based on three relatively stable and distinct morphological characters: dorsal ground color (green or gray), middorsal stripe (absence, wide, or narrow), occipital rusty spot (absence or presence). The grey individuals are more common and larger than the green individuals (frequency 88.1 vs. 11.9%, respectively) and (SVL 39.4-36.6 vs. 35.7-34.6 mm, respectively). There is a higher proportion of individuals with a middorsal stripe (59.7%) while absence of the occipital rusty spot is more common in the population (82.3%). We expect additional studies in different habitat types would help build our understanding of the relationship between color polymorphism and habitat, geography, and climate.展开更多
Emerging as a prominent area of focus in energy conversion and storage technologies,the development of highly active metal-based single-atom catalysts(SACs)holds great significance in searching alternatives to replace ...Emerging as a prominent area of focus in energy conversion and storage technologies,the development of highly active metal-based single-atom catalysts(SACs)holds great significance in searching alternatives to replace precious metals toward the efficient,stable,and low-cost hydrogen evolution reaction(HER),as well as the oxygen evolution reaction(OER)and the oxygen reduction reaction(ORR).Combining the tremendous tunability of ligand and coordination environment with rich metal-based electrocatalysts can create breakthrough opportunities for achieving both high stability and activity.Herein,we propose a novel and stable holey graphene-like carbon nitride monolayer g-C_(16)N5(N_(4)@g-C_(16)N_(3))stoichiometries interestingly behaving as a natural substrate for constructing SACs((TM-N_(4))@g-C_(16)N_(3)),whose evenly distributed holes map rich and uniform nitrogen coordination positions with electron-rich lone pairs for anchoring transition metal(TM)atoms.Then,we employed density functional theory(DFT)calculations to systematically investigate the electrocatalytic activity of(TM-N_(4))@g-C_(16)N_(3) toward HER/OER/ORR,meanwhile considering the synergistic modulation of H-loading and O-coordination((TM-N_(x)O_(4-x))@g-C_(16)N_(3)^(-)H_(3),x=0–4).Together a“four-step procedure”screening mechanism with the first-principles high-throughput calculations,we find that(Rh-N_(4))and(Ir-N_(2)O_(2)-II)distributed on g-C_(16)N_(3)^(-)H_(3) can modulate the adsorption strength of the adsorbates,thus achieving the best HER/OER/ORR performance among 216 candidates,and the lowest overpotential of 0.098/0.3/0.46 V and 0.06/0.48/0.45 V,respectively.Additionally,the d-band center,crystal orbital Hamilton population(COHP),and molecular orbitals are used to reveal the OER/ORR activity source.Particularly,the Rh/Ir-d orbital is dramatically hybridized with the O-p orbital of the oxygenated adsorbates,so that the lone-electrons incipiently locate at the antibonding orbital pair up and populate the downward bonding orbital,allowing oxygenated intermediates to be adsorbed onto(TM-N_(x)O_(4-x))@g-C_(16)N_(3)^(-)H_(3) appropriately.展开更多
Acetone is an important industrial raw material as well as biomarker in medical diagnosis.The detection of acetone has great significance for safety and health.However,high selectivity and low concentration(ppb level)...Acetone is an important industrial raw material as well as biomarker in medical diagnosis.The detection of acetone has great significance for safety and health.However,high selectivity and low concentration(ppb level)detection remain challenges for semiconductor gas sensor.Herein,we present a novel sensitive material with bimetallic PtCu nanocrystal modified on WO3·H2O hollow spheres(HS),which shows high sensitivity,excellent selectivity,fast response/recovery speed and low limit of detection(LOD)to acetone detection.Noteworthy,the response(Ra/Rg)of WO3·H2O HS sensor increased by 9.5 times after modification with 0.02%bimetallic PtCu nanocrystals.The response of PtCu/WO3·H2O HS to 50 ppm acetone is as high as 204.9 with short response/recovery times(3.4 s/7.5 s).Finally,the gassensitivity mechanism was discussed based on gas sensitivity test results.This research will offer a new route for high efficient acetone detection.展开更多
基金funded by the National Natural Science Foundation of China(NSFC 31071891,31471968)Natural Science Foundation of the Education Department of Anhui Province of China(No.KJ2014A244)the Zoology and Conservation Biology Research Innovation Group of Huangshan University
文摘Many anuran species exhibit striking color and/or pattern polymorphisms. We sampled 599 adult rice frogs, Fejervarya multistriata, from a rice paddy in the periphery of the Lingnan Nature Reserve (Huangshan, Anhui). We recognized ten morphs based on three relatively stable and distinct morphological characters: dorsal ground color (green or gray), middorsal stripe (absence, wide, or narrow), occipital rusty spot (absence or presence). The grey individuals are more common and larger than the green individuals (frequency 88.1 vs. 11.9%, respectively) and (SVL 39.4-36.6 vs. 35.7-34.6 mm, respectively). There is a higher proportion of individuals with a middorsal stripe (59.7%) while absence of the occipital rusty spot is more common in the population (82.3%). We expect additional studies in different habitat types would help build our understanding of the relationship between color polymorphism and habitat, geography, and climate.
基金supported by the National Natural Science Foundation of China(No.21905175).
文摘Emerging as a prominent area of focus in energy conversion and storage technologies,the development of highly active metal-based single-atom catalysts(SACs)holds great significance in searching alternatives to replace precious metals toward the efficient,stable,and low-cost hydrogen evolution reaction(HER),as well as the oxygen evolution reaction(OER)and the oxygen reduction reaction(ORR).Combining the tremendous tunability of ligand and coordination environment with rich metal-based electrocatalysts can create breakthrough opportunities for achieving both high stability and activity.Herein,we propose a novel and stable holey graphene-like carbon nitride monolayer g-C_(16)N5(N_(4)@g-C_(16)N_(3))stoichiometries interestingly behaving as a natural substrate for constructing SACs((TM-N_(4))@g-C_(16)N_(3)),whose evenly distributed holes map rich and uniform nitrogen coordination positions with electron-rich lone pairs for anchoring transition metal(TM)atoms.Then,we employed density functional theory(DFT)calculations to systematically investigate the electrocatalytic activity of(TM-N_(4))@g-C_(16)N_(3) toward HER/OER/ORR,meanwhile considering the synergistic modulation of H-loading and O-coordination((TM-N_(x)O_(4-x))@g-C_(16)N_(3)^(-)H_(3),x=0–4).Together a“four-step procedure”screening mechanism with the first-principles high-throughput calculations,we find that(Rh-N_(4))and(Ir-N_(2)O_(2)-II)distributed on g-C_(16)N_(3)^(-)H_(3) can modulate the adsorption strength of the adsorbates,thus achieving the best HER/OER/ORR performance among 216 candidates,and the lowest overpotential of 0.098/0.3/0.46 V and 0.06/0.48/0.45 V,respectively.Additionally,the d-band center,crystal orbital Hamilton population(COHP),and molecular orbitals are used to reveal the OER/ORR activity source.Particularly,the Rh/Ir-d orbital is dramatically hybridized with the O-p orbital of the oxygenated adsorbates,so that the lone-electrons incipiently locate at the antibonding orbital pair up and populate the downward bonding orbital,allowing oxygenated intermediates to be adsorbed onto(TM-N_(x)O_(4-x))@g-C_(16)N_(3)^(-)H_(3) appropriately.
基金the financial supports from the National Natural Science Foundation of China(Nos.51702212,51802195,31701678,61671284)Science and Technology Commission of Shanghai Municipality(Nos.18511110600,19ZR1435200)+1 种基金Innovation Program of Shanghai Municipal Education Commission(No.2019-01-07-00-07-E00015)Program of Shanghai Academic Research Leader(No.19XD1422900)。
文摘Acetone is an important industrial raw material as well as biomarker in medical diagnosis.The detection of acetone has great significance for safety and health.However,high selectivity and low concentration(ppb level)detection remain challenges for semiconductor gas sensor.Herein,we present a novel sensitive material with bimetallic PtCu nanocrystal modified on WO3·H2O hollow spheres(HS),which shows high sensitivity,excellent selectivity,fast response/recovery speed and low limit of detection(LOD)to acetone detection.Noteworthy,the response(Ra/Rg)of WO3·H2O HS sensor increased by 9.5 times after modification with 0.02%bimetallic PtCu nanocrystals.The response of PtCu/WO3·H2O HS to 50 ppm acetone is as high as 204.9 with short response/recovery times(3.4 s/7.5 s).Finally,the gassensitivity mechanism was discussed based on gas sensitivity test results.This research will offer a new route for high efficient acetone detection.