We propose and experimentally demonstrate an integrated silicon photonic scheme to generate multi-channel millimeter-wave(MMW) signals for 5 G multi-user applications. The fabricated silicon photonic chip has a footpr...We propose and experimentally demonstrate an integrated silicon photonic scheme to generate multi-channel millimeter-wave(MMW) signals for 5 G multi-user applications. The fabricated silicon photonic chip has a footprint of 1.1 × 2.1 mm^2 and integrates 7 independent channels each having on-chip polarization control and heterodyne mixing functions. 7 channels of4-Gb/s QPSK baseband signals are delivered via a 2-km multi-core fiber(MCF) and coupled into the chip with a local oscillator(LO) light. The polarization state of each signal light is automatically adjusted and aligned with that of the LO light, and then 7 channels of 28-GHz MMW carrying 4-Gb/s QPSK signals are generated by optical heterodyne beating. Automated polarizationcontrol function of each channel is also demonstrated with ~7-ms tuning time and ~27-dB extinction ratio.展开更多
lectro-optic modulators are key components in data communication,microwave photonics,and quantum photonics.Modulation bandwidth,energy efficiency,and device dimension are crucial metrics of modulators.Here,we provide ...lectro-optic modulators are key components in data communication,microwave photonics,and quantum photonics.Modulation bandwidth,energy efficiency,and device dimension are crucial metrics of modulators.Here,we provide an important direction for the miniaturization of electro-optic modulators by reporting on ultracompact topological modulators.A topological interface state in a one-dimensional lattice is implemented on a thin-film lithium-niobate integrated platform.Due to the strong optical confinement of the interface state and the peaking enhancement of the electro-optic response,a topological cavity with a size of 1.6×140μm^(2)enables a large modulation bandwidth of 104 GHz.The first topological modulator exhibits the most compact device size compared to reported LN modulators with bandwidths above 28 GHz,to the best of our knowledge.100 Gb/s non-return-to-zero and 100 Gb/s four-level pulse amplitude modulation signals are generated.The switching energy is 5.4 fJ/bit,owing to the small electro-optic mode volume and low capacitance.The topological modulator accelerates the response time of topological photonic devices from the microsecond order to the picosecond order and provides an essential foundation for the implementation of large-scale lithium-niobate photonic integrated circuits.展开更多
基金supported by the National Key R&D Pro-gram of China under Grant 2016YFB0402501in part by the Natural Science Foundation of China under grant 61605112Open Fund of IPOC under grant BUPT
文摘We propose and experimentally demonstrate an integrated silicon photonic scheme to generate multi-channel millimeter-wave(MMW) signals for 5 G multi-user applications. The fabricated silicon photonic chip has a footprint of 1.1 × 2.1 mm^2 and integrates 7 independent channels each having on-chip polarization control and heterodyne mixing functions. 7 channels of4-Gb/s QPSK baseband signals are delivered via a 2-km multi-core fiber(MCF) and coupled into the chip with a local oscillator(LO) light. The polarization state of each signal light is automatically adjusted and aligned with that of the LO light, and then 7 channels of 28-GHz MMW carrying 4-Gb/s QPSK signals are generated by optical heterodyne beating. Automated polarizationcontrol function of each channel is also demonstrated with ~7-ms tuning time and ~27-dB extinction ratio.
基金This work was supported in part by the Key Technologies Research and Development Program under Grant 2020YFB2206101the National Natural Science Foundation of China(NSFC)under Grant 62035016/61975115/61835008.
文摘lectro-optic modulators are key components in data communication,microwave photonics,and quantum photonics.Modulation bandwidth,energy efficiency,and device dimension are crucial metrics of modulators.Here,we provide an important direction for the miniaturization of electro-optic modulators by reporting on ultracompact topological modulators.A topological interface state in a one-dimensional lattice is implemented on a thin-film lithium-niobate integrated platform.Due to the strong optical confinement of the interface state and the peaking enhancement of the electro-optic response,a topological cavity with a size of 1.6×140μm^(2)enables a large modulation bandwidth of 104 GHz.The first topological modulator exhibits the most compact device size compared to reported LN modulators with bandwidths above 28 GHz,to the best of our knowledge.100 Gb/s non-return-to-zero and 100 Gb/s four-level pulse amplitude modulation signals are generated.The switching energy is 5.4 fJ/bit,owing to the small electro-optic mode volume and low capacitance.The topological modulator accelerates the response time of topological photonic devices from the microsecond order to the picosecond order and provides an essential foundation for the implementation of large-scale lithium-niobate photonic integrated circuits.