Benzo[a]pyrene(BaP),a ubiquitous pollutant,raises environmental health concerns due to induction of bone toxicity in the unexposed offspring.Exposure of F0 ancestor medaka(Oryzias latipes)to 1μg/L BaP for 21 days cau...Benzo[a]pyrene(BaP),a ubiquitous pollutant,raises environmental health concerns due to induction of bone toxicity in the unexposed offspring.Exposure of F0 ancestor medaka(Oryzias latipes)to 1μg/L BaP for 21 days causes reduced vertebral bone thickness in the unexposed F3 male offspring.To reveal the inherited modifications,osteoblast(OB)abundance and molecular signaling pathways of transgenerational BaP-induced bone thinning were assessed.Histomorphometric analysis showed a reduction in OB abundance.Analyses of the miRNA and mRNA transcriptomes revealed the dysregulation of Wnt signaling(frzb/ola-miR-1–3p,sfrp5/ola-miR-96–5p/miR-455–5p)and bone morphogenetic protein(Bmp)signaling(bmp3/ola-miR-96–5p/miR-181b-5p/miR-199a-5p/miR-205–5p/miR-455–5p).Both pathways are major indicators of impaired bone formation,while the altered Rank signaling in osteoclasts(c-fos/miR-205–5p)suggests a potentially augmented bone resorption.Interestingly,a typical BaP-responsive pathway,the Nrf2-mediated oxidative stress response(gst/ola-miR-181b-5p/miR-199a-5p/miR-205),was also affected.Moreover,mRNA levels of epigenetic modification enzymes(e.g.,hdac6,hdac7,kdm5b)were found dysregulated.The findings indicated that epigenetic factors(e.g.,miRNAs,histone modifications)may directly regulate the expression of genes associated with transgenerational BaP bone toxicity and warrants further studies.The identified candidate genes and miRNAs may serve as potential biomarkers for BaP-induced bone disease and as indicators of historic exposures in wild fish for conservation purposes.展开更多
The peroxisome proliferator-activated receptor(PPARδ)agonists are reported to improve insulin sensitivity,reduce glucose levels,and alleviate dysfunctional lipid metabolism in animal models of type 2 diabetes mellitu...The peroxisome proliferator-activated receptor(PPARδ)agonists are reported to improve insulin sensitivity,reduce glucose levels,and alleviate dysfunctional lipid metabolism in animal models of type 2 diabetes mellitus.However,the underlying mechanisms remain incompletely understood.Metabolism plays an essential role in the biological system.Monitoring of metabolic changes in response to disease conditions or drug treatment is critical for better understanding of the pathophysiological mechanisms.In this study,metabolic profiling analysis by gas chromatography-mass spectrometry integrated with targeted analysis by liquid chro matography-mass spectrometry was carried out in plasma samples of db/db diabetic mice after six-week treatment of PPARδagonist GW501516.GW501516 treatment significantly altered levels of metabolites,such as branched-chain amino acids(BCAAs),BCAA metabolites(3-hydroxyisobutyric acid and 3-hydroxyisovaleric acid),long-chain fatty acids,uric acid and ketone bodies(3-hydroxybutyric acid and 2-hydroxybutyric acid)which are all associated with the impaired systemic insulin sensitivity.The pre sent results indicate the beneficial effect of PPARδagonist in alleviating insulin resistance of diabetic mice by favorably modulating metabolic profile,thus providing valuable information in understanding the therapeutic potential of PPARδagonists in correcting metabolic dysfunction in diabetes.展开更多
基金supported by the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.SMSEGL20SC02)the National Natural Science Foundation of China(No.41977371)+1 种基金a Project grant from the Shenzhen and Technology Innovation Commission(No.JCYJ20170818094137791)supported by the National Institute of Environmental Health Sciences of the National Institutes of Health under award number 1R15ES032936-01.
文摘Benzo[a]pyrene(BaP),a ubiquitous pollutant,raises environmental health concerns due to induction of bone toxicity in the unexposed offspring.Exposure of F0 ancestor medaka(Oryzias latipes)to 1μg/L BaP for 21 days causes reduced vertebral bone thickness in the unexposed F3 male offspring.To reveal the inherited modifications,osteoblast(OB)abundance and molecular signaling pathways of transgenerational BaP-induced bone thinning were assessed.Histomorphometric analysis showed a reduction in OB abundance.Analyses of the miRNA and mRNA transcriptomes revealed the dysregulation of Wnt signaling(frzb/ola-miR-1–3p,sfrp5/ola-miR-96–5p/miR-455–5p)and bone morphogenetic protein(Bmp)signaling(bmp3/ola-miR-96–5p/miR-181b-5p/miR-199a-5p/miR-205–5p/miR-455–5p).Both pathways are major indicators of impaired bone formation,while the altered Rank signaling in osteoclasts(c-fos/miR-205–5p)suggests a potentially augmented bone resorption.Interestingly,a typical BaP-responsive pathway,the Nrf2-mediated oxidative stress response(gst/ola-miR-181b-5p/miR-199a-5p/miR-205),was also affected.Moreover,mRNA levels of epigenetic modification enzymes(e.g.,hdac6,hdac7,kdm5b)were found dysregulated.The findings indicated that epigenetic factors(e.g.,miRNAs,histone modifications)may directly regulate the expression of genes associated with transgenerational BaP bone toxicity and warrants further studies.The identified candidate genes and miRNAs may serve as potential biomarkers for BaP-induced bone disease and as indicators of historic exposures in wild fish for conservation purposes.
基金supported by Hong Kong Research Grants Council(No.C4024-16W)National Natural Science Foundation of China(No.91939302)Health and Medical Research Fund,Hong Kong Government(No.05161746)。
文摘The peroxisome proliferator-activated receptor(PPARδ)agonists are reported to improve insulin sensitivity,reduce glucose levels,and alleviate dysfunctional lipid metabolism in animal models of type 2 diabetes mellitus.However,the underlying mechanisms remain incompletely understood.Metabolism plays an essential role in the biological system.Monitoring of metabolic changes in response to disease conditions or drug treatment is critical for better understanding of the pathophysiological mechanisms.In this study,metabolic profiling analysis by gas chromatography-mass spectrometry integrated with targeted analysis by liquid chro matography-mass spectrometry was carried out in plasma samples of db/db diabetic mice after six-week treatment of PPARδagonist GW501516.GW501516 treatment significantly altered levels of metabolites,such as branched-chain amino acids(BCAAs),BCAA metabolites(3-hydroxyisobutyric acid and 3-hydroxyisovaleric acid),long-chain fatty acids,uric acid and ketone bodies(3-hydroxybutyric acid and 2-hydroxybutyric acid)which are all associated with the impaired systemic insulin sensitivity.The pre sent results indicate the beneficial effect of PPARδagonist in alleviating insulin resistance of diabetic mice by favorably modulating metabolic profile,thus providing valuable information in understanding the therapeutic potential of PPARδagonists in correcting metabolic dysfunction in diabetes.