期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High-Performance Aqueous Zinc–Manganese Battery with Reversible Mn^(2+)/Mn^(4+) Double Redox Achieved by Carbon Coated MnO_x Nanoparticles 被引量:1
1
作者 jingdong huang Jing Zeng +2 位作者 Kunjie Zhu Ruizhi Zhang Jun Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第9期44-55,共12页
There is an urgent need for low-cost,high-energy-density,environmentally friendly energy storage devices to fulfill the rapidly increasing need for electrical energy storage.Multi-electron redox is considerably crucia... There is an urgent need for low-cost,high-energy-density,environmentally friendly energy storage devices to fulfill the rapidly increasing need for electrical energy storage.Multi-electron redox is considerably crucial for the development of high-energy-density cathodes.Here we present highperformance aqueous zinc-manganese batteries with reversible Mn2+/Mn4+ double redox.The active Mn4+is generated in situ from the Mn2+-containing MnOx nanoparticles and electrolyte.Benefitting from the low crystallinity of the birnessite-type MnO2 as well as the electrolyte with Mn2+additive,the MnOX cathode achieves an ultrahigh energy density with a peak of845.1 Wh kg-1 and an ultralong lifespan of 1500 cycles.The combination of electrochemical measurements and material characterization reveals the reversible Mn2+/Mn4+double redox(birnessite-type MnO2? monoclinic MnOOH and spinel ZnMn2O4 H?Mn2+ions).The reversible Mn2+/Mn4+double redox electrode reaction mechanism offers new opportunities for the design of low-cost,high-energy-density cathodes for advanced rechargeable aqueous batteries. 展开更多
关键词 Aqueous zinc–manganese batteries Mn-based cathode materials High energy density Mn2+/Mn4+double redox
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部