Borehole instability in naturally fractured rocks poses significant challenges to drilling.Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure(P...Borehole instability in naturally fractured rocks poses significant challenges to drilling.Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure(P w)and pore pressure(P p)during drilling,which may cause wellbore instability.However,the weakening of fracture strength due to mud intrusion is not considered in most existing borehole stability analyses,which may yield significant errors and misleading predictions.In addition,only limited factors were analyzed,and the fracture distribution was oversimplified.In this paper,the impacts of mud intrusion and associated fracture strength weakening on borehole stability in fractured rocks under both isotropic and anisotropic stress states are investigated using a coupled DEM(distinct element method)and DFN(discrete fracture network)method.It provides estimates of the effect of fracture strength weakening,wellbore pressure,in situ stresses,and sealing efficiency on borehole stability.The results show that mud intrusion and weakening of fracture strength can damage the borehole.This is demonstrated by the large displacement around the borehole,shear displacement on natural fractures,and the generation of fracture at shear limit.Mud intrusion reduces the shear strength of the fracture surface and leads to shear failure,which explains that the increase in mud weight may worsen borehole stability during overbalanced drilling in fractured formations.A higher in situ stress anisotropy exerts a significant influence on the mechanism of shear failure distribution around the wellbore.Moreover,the effect of sealing natural fractures on maintaining borehole stability is verified in this study,and the increase in sealing efficiency reduces the radial invasion distance of drilling mud.This study provides a directly quantitative prediction method of borehole instability in naturally fractured formations,which can consider the discrete fracture network,mud intrusion,and associated weakening of fracture strength.The information provided by the numerical approach(e.g.displacement around the borehole,shear displacement on fracture,and fracture at shear limit)is helpful for managing wellbore stability and designing wellbore-strengthening operations.展开更多
In this paper, we present an analytical method for evaluating the stress field within a casing-cement-formation system of oil/gas wells under anisotropic in-situ stresses in the rock formation and uniform pressure wit...In this paper, we present an analytical method for evaluating the stress field within a casing-cement-formation system of oil/gas wells under anisotropic in-situ stresses in the rock formation and uniform pressure within the casing. The present method treats the in-situ stresses in the formation as initial stresses since the in-situ stresses have already developed in the formation before placement of cement and casing into the well. It is demonstrated that, via this treatment, the present method excludes additional displacements within the formation predicted by the existing method, and gives more reasonable stress results. An actual tight-oil well is analyzed using the present and existing analytical methods, as well as the finite element method. Good agreement between the analytical results and the finite element analysis (FEA) results is obtained, validating the present method. It is also evident that, compared with the present method, the existing method overestimates the compressive stress level within the casing and the cement. Finally, the effects of elastic properties of the formation, cement, and inner pressure of casing on stresses within the casing and cement are illustrated with a series of sensitivity analyses.展开更多
Drilling fluids with complicated compositions are becoming more common as the oil and gas industry develops. The production of hazardous cuttings is increasing, which not only stifles the oil and gas industry’s devel...Drilling fluids with complicated compositions are becoming more common as the oil and gas industry develops. The production of hazardous cuttings is increasing, which not only stifles the oil and gas industry’s development but also poses a severe environmental threat. Deep underground re-injection is a cost-effective and efficient method for dealing with hazardous cuttings. Numerous experiments and numerical studies on cuttings re-injection have been conducted in the past thirty years. However, there is still a divergence of views on the fracture development in the process of cuttings re-injection. A comprehensive review of existing studies is necessary to help researchers advance this technology. This paper provides a review of the fundamental studies on fracture behaviors during the deep underground re-injection of drilling cuttings. The limitations of the existing studies are also discussed to inspire new research endeavors.展开更多
The ROP(rate of penetration)within the horizontal section of shale gas wells in the Luzhou oil field is low,seriously delaying the exploration and development process.It is proved that reducing mud density mitigates t...The ROP(rate of penetration)within the horizontal section of shale gas wells in the Luzhou oil field is low,seriously delaying the exploration and development process.It is proved that reducing mud density mitigates the bottom-hole differential pressure(ΔP)and increases the ROP during overbalanced drilling.However,wellbore collapse may occur when wellbore pressure is excessively low.It is urgent to ascertain the optimal equilibrium point between improving ROP and maintaining wellbore stability.The safe mud weight window and the lower limit of mud density in the horizontal section of the Luzhou block are predicted using the piecewise fitting method based on conventional logging data.Then,the accuracy of the collapse pressure prediction was verified using the distinct element method(DEM),and the effect of wellbore pressure,in-situ stress,rock cohesion,and natural fracture density on borehole collapse was investigated.Finally,a fitting model ofΔP and ROP of the horizontal section in the Luzhou block is established to predict ROP promotion potential after mud density reduction.The field application of this approach,demonstrated in 8 horizontal wells in the Luzhou block,effectively validates the efficiency of reducing mud density for ROP improvement.This study provides a useful method for simultaneously improving ROP and maintaining wellbore stability and offers significant insights for petroleum engineers in the design of drilling parameters.展开更多
基金financially supported by National Natural Science Foundation of China(Grant Nos.52074312 and 52211530097)CNPC Science and Technology Innovation Foundation(Grant No.2021DQ02-0505).
文摘Borehole instability in naturally fractured rocks poses significant challenges to drilling.Drilling mud invades the surrounding formations through natural fractures under the difference between the wellbore pressure(P w)and pore pressure(P p)during drilling,which may cause wellbore instability.However,the weakening of fracture strength due to mud intrusion is not considered in most existing borehole stability analyses,which may yield significant errors and misleading predictions.In addition,only limited factors were analyzed,and the fracture distribution was oversimplified.In this paper,the impacts of mud intrusion and associated fracture strength weakening on borehole stability in fractured rocks under both isotropic and anisotropic stress states are investigated using a coupled DEM(distinct element method)and DFN(discrete fracture network)method.It provides estimates of the effect of fracture strength weakening,wellbore pressure,in situ stresses,and sealing efficiency on borehole stability.The results show that mud intrusion and weakening of fracture strength can damage the borehole.This is demonstrated by the large displacement around the borehole,shear displacement on natural fractures,and the generation of fracture at shear limit.Mud intrusion reduces the shear strength of the fracture surface and leads to shear failure,which explains that the increase in mud weight may worsen borehole stability during overbalanced drilling in fractured formations.A higher in situ stress anisotropy exerts a significant influence on the mechanism of shear failure distribution around the wellbore.Moreover,the effect of sealing natural fractures on maintaining borehole stability is verified in this study,and the increase in sealing efficiency reduces the radial invasion distance of drilling mud.This study provides a directly quantitative prediction method of borehole instability in naturally fractured formations,which can consider the discrete fracture network,mud intrusion,and associated weakening of fracture strength.The information provided by the numerical approach(e.g.displacement around the borehole,shear displacement on fracture,and fracture at shear limit)is helpful for managing wellbore stability and designing wellbore-strengthening operations.
基金supported by the National Natural Science Foundation of China(Nos.11502304 and51521063)the Science Foundation of China University of Petroleum(Nos.C201601 and2462013YJRC023)
文摘In this paper, we present an analytical method for evaluating the stress field within a casing-cement-formation system of oil/gas wells under anisotropic in-situ stresses in the rock formation and uniform pressure within the casing. The present method treats the in-situ stresses in the formation as initial stresses since the in-situ stresses have already developed in the formation before placement of cement and casing into the well. It is demonstrated that, via this treatment, the present method excludes additional displacements within the formation predicted by the existing method, and gives more reasonable stress results. An actual tight-oil well is analyzed using the present and existing analytical methods, as well as the finite element method. Good agreement between the analytical results and the finite element analysis (FEA) results is obtained, validating the present method. It is also evident that, compared with the present method, the existing method overestimates the compressive stress level within the casing and the cement. Finally, the effects of elastic properties of the formation, cement, and inner pressure of casing on stresses within the casing and cement are illustrated with a series of sensitivity analyses.
基金financially supported by National Natural Science Foundation of China(Grant Nos.52074312 and 52004298)。
文摘Drilling fluids with complicated compositions are becoming more common as the oil and gas industry develops. The production of hazardous cuttings is increasing, which not only stifles the oil and gas industry’s development but also poses a severe environmental threat. Deep underground re-injection is a cost-effective and efficient method for dealing with hazardous cuttings. Numerous experiments and numerical studies on cuttings re-injection have been conducted in the past thirty years. However, there is still a divergence of views on the fracture development in the process of cuttings re-injection. A comprehensive review of existing studies is necessary to help researchers advance this technology. This paper provides a review of the fundamental studies on fracture behaviors during the deep underground re-injection of drilling cuttings. The limitations of the existing studies are also discussed to inspire new research endeavors.
基金supported by National Natural Science Foundation of China(No.52074312 and No.52211530097)CNPC Science and Technology Innovation Foundation(2021DQ02-0505).
文摘The ROP(rate of penetration)within the horizontal section of shale gas wells in the Luzhou oil field is low,seriously delaying the exploration and development process.It is proved that reducing mud density mitigates the bottom-hole differential pressure(ΔP)and increases the ROP during overbalanced drilling.However,wellbore collapse may occur when wellbore pressure is excessively low.It is urgent to ascertain the optimal equilibrium point between improving ROP and maintaining wellbore stability.The safe mud weight window and the lower limit of mud density in the horizontal section of the Luzhou block are predicted using the piecewise fitting method based on conventional logging data.Then,the accuracy of the collapse pressure prediction was verified using the distinct element method(DEM),and the effect of wellbore pressure,in-situ stress,rock cohesion,and natural fracture density on borehole collapse was investigated.Finally,a fitting model ofΔP and ROP of the horizontal section in the Luzhou block is established to predict ROP promotion potential after mud density reduction.The field application of this approach,demonstrated in 8 horizontal wells in the Luzhou block,effectively validates the efficiency of reducing mud density for ROP improvement.This study provides a useful method for simultaneously improving ROP and maintaining wellbore stability and offers significant insights for petroleum engineers in the design of drilling parameters.