期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Matching Algorithm with Reinforcement Learning and Decoupling Strategy for Order Dispatching in On-Demand Food Delivery
1
作者 jingfang chen Ling Wang +3 位作者 Zixiao Pan Yuting Wu Jie Zheng Xuetao Ding 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第2期386-399,共14页
The on-demand food delivery(OFD)service has gained rapid development in the past decades but meanwhile encounters challenges for further improving operation quality.The order dispatching problem is one of the most con... The on-demand food delivery(OFD)service has gained rapid development in the past decades but meanwhile encounters challenges for further improving operation quality.The order dispatching problem is one of the most concerning issues for the OFD platforms,which refer to dynamically dispatching a large number of orders to riders reasonably in very limited decision time.To solve such a challenging combinatorial optimization problem,an effective matching algorithm is proposed by fusing the reinforcement learning technique and the optimization method.First,to deal with the large-scale complexity,a decoupling method is designed by reducing the matching space between new orders and riders.Second,to overcome the high dynamism and satisfy the stringent requirements on decision time,a reinforcement learning based dispatching heuristic is presented.To be specific,a sequence-to-sequence neural network is constructed based on the problem characteristic to generate an order priority sequence.Besides,a training approach is specially designed to improve learning performance.Furthermore,a greedy heuristic is employed to effectively dispatch new orders according to the order priority sequence.On real-world datasets,numerical experiments are conducted to validate the effectiveness of the proposed algorithm.Statistical results show that the proposed algorithm can effectively solve the problem by improving delivery efficiency and maintaining customer satisfaction. 展开更多
关键词 order dispatching on-demand delivery reinforcement learning decoupling strategy sequence-to-sequence neural network
原文传递
重大传染病诊疗定点医院后勤保障应急模式应用
2
作者 陈敬芳 林洁 +4 位作者 王志强 岳建荣 黄敏 黄绮玲 何清 《中华卫生应急电子杂志》 2023年第1期44-46,共3页
重大传染病的发生具有隐蔽性及难预见的特点。2003年以来,我国先后经历了严重急性呼吸综合征(severe acute respiratory syndrome,SARS)、禽流感、甲流、2019新型冠状病毒病(corona virus disease 2019,COVID-19)等重大传染病疫情。定... 重大传染病的发生具有隐蔽性及难预见的特点。2003年以来,我国先后经历了严重急性呼吸综合征(severe acute respiratory syndrome,SARS)、禽流感、甲流、2019新型冠状病毒病(corona virus disease 2019,COVID-19)等重大传染病疫情。定点医院是政府卫生健康行政主管部门在发生重大传染病疫情时确定的医疗救治定点机构[1]。定点医院的应急模式及能力,是重大传染病疫情防控的基础;后勤保障是医院运营的重要组成部分[2],也是医疗应急管理的基础[3]。 展开更多
关键词 严重急性呼吸综合征 禽流感 应急模式 重大传染病 卫生健康
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部