期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
CeO_2表面分散态WO_3的氨选择性催化还原性能(英文) 被引量:4
1
作者 张雷 孙敬方 +3 位作者 熊燕 曾小清 汤常金 董林 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第10期1749-1758,共10页
铈基材料在氨选择性催化还原氮氧化物(NH_3-SCR)的研究中备受关注,亦被认为是潜在的新型环境友好型催化剂.CeO_2具有独特的氧化还原性能和优良的储释氧性能,易与其它金属氧化物发生协同催化而有利于提高催化剂的催化反应性能,而WO_3可... 铈基材料在氨选择性催化还原氮氧化物(NH_3-SCR)的研究中备受关注,亦被认为是潜在的新型环境友好型催化剂.CeO_2具有独特的氧化还原性能和优良的储释氧性能,易与其它金属氧化物发生协同催化而有利于提高催化剂的催化反应性能,而WO_3可以改善催化剂的表面酸性.研究亦报道了WO_3可以改善CeO_2的NH_3-SCR反应的高温活性和N2选择性,其原因在于WO_3增加了铈基催化剂NH_3的吸附性能且抑制了NH_3非选择性氧化成NOx.我们采用浸渍法制备了一系列负载型WO_3/CeO_2催化剂,并利用XRD,Raman,XPS,H2-TPR,NH_3-TPD和in situ DRIFT对其理化性质进行了表征,系统研究了WO_3负载量对WO_3/CeO_2催化剂NH_3-SCR催化性能的影响,主要研究的内容包括:(1)WO_3/CeO_2催化剂中WO_3的状态与催化性能之间的关系;(2)WO_3负载量对WO_3/CeO_2催化剂的NH_3和NO吸附行为的影响.NH_3-SCR反应测试表明WO_3负载量对WO_3/CeO_2催化剂有显著影响,优化的WO_3/CeO_2催化剂在200–450°C具有良好的脱硝性能,且在300°C通入SO2+H2O条件下依然保持优异的催化活性.XPS和H2-TPR结果表明,WO_3分散在CeO_2表面抑制了CeO_2表面活性氧和表面晶格氧的氧化能力,这导致催化剂对NO的氧化以及对硝酸盐的吸附性能相比于纯CeO_2显著降低,同时,in situ DRIFT也证实,随着WO_3负载量的增加,WO_3/CeO_2催化剂表面吸附硝酸盐能力下降.因此,我们认为,由于低活性的晶相WO_3覆盖在催化剂表面,阻碍了催化剂的表面活性位,降低了催化剂的氧化还原能力和表面酸量,从而晶相WO_3抑制了WO_3/CeO_2催化剂的催化活性.同时,我们发现在70°C下采用氨水可以洗掉WO_3/CeO_2催化剂中的晶相WO_3,且洗涤后的样品催化活性有所提升,这进一步验证了晶相WO_3对催化活性的抑制作用.In situ DRIFT结果表明WO_3/CeO_2催化剂上NH_3-SCR反应是通过Eley-Rideal机理进行,即吸附NH_3物种与气相NO之间发生反应.随着WO_3负载量的增加,WO_3/CeO_2催化剂中NH_3的吸附能力先增强后减弱,而NO吸附能力持续减弱,这有利于表面酸位在反应过程中不被硝酸盐阻碍,当WO_3负载量在分散容量附近时,这种吸附特性的效果发挥到最大,从而最大限度地促进NH_3-SCR反应按照Eley-Rideal机理顺利进行. 展开更多
关键词 氨选择性催化还原 WO3/CeO2催化剂 WO3状态 分散容量 红外光谱
下载PDF
Insight into the promotional mechanism of Cu modification towards wide-temperature NH3-SCR performance of NbCe catalyst 被引量:1
2
作者 Dongqi An Yuyao Yang +4 位作者 Weixin Zou Yandi Cai Qing Tong jingfang sun Lin Dong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第10期301-309,共9页
A simple strategy of Cu modification was proposed to broaden the operation temperature window for NbCe catalyst.The best catalyst Cu0.010/Nb1Ce3 presented over 90%NO conversion in a wide temperature range of 200-400℃... A simple strategy of Cu modification was proposed to broaden the operation temperature window for NbCe catalyst.The best catalyst Cu0.010/Nb1Ce3 presented over 90%NO conversion in a wide temperature range of 200-400℃and exhibited an excellent H_(2)O or/and SO_(2) resistance at 275℃.To understand the promotional mechanism of Cu modification,the correlation among the"activity-structure-property"were tried to establish systematically.Cu species highly dispersed on NbCe catalyst to serve as the active component.The strong interaction among Cu,Nb and Ce promoted the emergence of NbO4 and induced more Bronsted acid sites.And Cu modification obviously enhanced the redox behavior of the NbCe catalyst.Besides,EPR probed the Cu species exited in the form of monomeric and dimeric Cu^(2+),the isolated Cu^(2+)acted as catalytic active sites to promote the reaction:Cu^(2+)-NO_(3)^(-)+NO(g)→Cu^(2+)-NO_(2)^(-)+NO_(2)(g).Then the generated NO_(2) would accelerate the fast-SCR reaction process and thus facilitated the lowtemperature deNO_(x) efficiency.Moreover,surface nitrates became unstable and easy to decompose after Cu modification,thus providing additional adsorption and activation sites for NH3,and ensuring the improvement of catalytic activity at high temperature.Since the NH3-SCR reaction followed by E-R reaction pathway efficaciously over Cu_(0.010)/Nb_(1)Ce_(3) catalyst,the excellent H_(2)O and SO_(2) resistance was as expected. 展开更多
关键词 NH_(3)-SCR NbCe catalyst Cu modification NO_(2)promoting effect Fast-SCR Flue gas
下载PDF
Effect of CeO_(2) nanoparticle sizes on catalytic performances of sulfated CeO_(2)/Al_(2)O_(3) catalyst in NH_(3)-SCR reaction
3
作者 Zhenghua Hu Dongqi An +7 位作者 Lei Zhang Xuping Wang Siyong Fang Xinyun Tian Liu Qiu jingfang sun Tingzhen Li Lin Dong 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第3期515-522,I0004,共9页
The sulfated CeO_(2)/Al_(2)O_(3) catalysts with different sizes of CeO_(2)nanoparticles were prepared by using pure H_2O or acetic acid solution as impregnation solvent, and the influence of sizes of CeO_(2) nanoparti... The sulfated CeO_(2)/Al_(2)O_(3) catalysts with different sizes of CeO_(2)nanoparticles were prepared by using pure H_2O or acetic acid solution as impregnation solvent, and the influence of sizes of CeO_(2) nanoparticles on the catalytic performances of the sulfated CeO_(2)/Al_(2)O_(3) catalyst was studied. The catalytic performance tests show that the sulfated CeO_(2)/Al_(2)O_(3) catalyst using acetic acid solution as impregnation solvent has better catalytic activity and the resistance to K+poisoning than the sulfated CeO_(2)/Al_(2)O_(3) catalyst using pure H_(2)O as impregnation solvent. The excellent catalytic performances can be ascribed to the smaller sizes of CeO_(2) nanoparticles in CeO_(2)/Al_(2)O_(3) catalyst using acetic acid solution, which results in larger amount of adsorbed sulfate species, surface acid sites, surface active oxygen species and excellent redox property. These features are helpful for improving the catalytic performances of sulfated CeO_(2)/Al_(2)O_(3) catalyst using smaller amount of CeO_(2) to cut the costs. 展开更多
关键词 Cerium-based catalyst Nanoscale effect NH_(3)selective catalytic reaction Sulfation process Alkali metal poisoning Rare earths
原文传递
Promotion effect of bulk sulfates over CeO_(2)for selective catalytic reduction of NO by NH_(3)at high temperatures
4
作者 Jiawei Ji Li Han +4 位作者 Wang Song jingfang sun Weixin Zou Changjin Tang Lin Dong 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第5期311-314,共4页
Understanding the influence of sulfates over catalysts for selective catalytic reduction of NO with NH_(3)(NH_(3)-SCR)is crucial due to the universal presence of SO_(2)in exhaust gas.Depending on the degree of sulfati... Understanding the influence of sulfates over catalysts for selective catalytic reduction of NO with NH_(3)(NH_(3)-SCR)is crucial due to the universal presence of SO_(2)in exhaust gas.Depending on the degree of sulfation,there mainly exist surface and bulk sulfates and NH_(3)-SCR activity is generally considered to suffer more from bulk sulfates.Herein,the unique function of bulk sulfates over Ce O_(2)in promoting hightemperature SCR reaction is revealed.Notably,compared with CeO_(2)dominated with surface sulfates(S-CeO_(2)-4h)and commercial V_2O_5-WO_(3)/TiO_(2),CeO_(2)with bulk sulfates(S-Ce O_(2)-72h)exhibits admirable NO conversion at the temperature range of 400-550℃.Bulk sulfates provide more Br?nsted acid sites with stronger strength for NH_(3)adsorption.Moreover,the oxidation ability of Ce O_(2)is significantly inhibited due to electron-withdrawing effect from bulk sulfates,which alleviates NH_(3)oxidation at high temperatures.More NH_(3)adsorption with high stability and limited NH_(3)oxidation capacity ensure the excellent catalytic performance for S-CeO_(2)-72h in high-temperature denitration.This work provides new insight of bulk sulfates in promoting SCR activity and open a new avenue to design de NO_xcatalysts employed at high temperatures. 展开更多
关键词 NH_(3)-SCR CeO_(2) Bulk sulfates High temperature denitration NH_(3)adsorption NH_(3)oxidation
原文传递
Influence of CeO2 loading on structure and catalytic activity for NH3-SCR over TiO2-supported CeO2 被引量:6
5
作者 Hongliang Zhang Long Ding +6 位作者 Hongming Long Jiaxin Li Wei Tan Jiawei Ji jingfang sun Changjin Tang Lin Dong 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第8期883-890,I0002,共9页
A series of supported CeO2/TiO2 catalysts were prepared to explore the influence of CeO2 loading on these catalysts for the selective catalytic reduction of NO3 by NH3(NH3-SCR).The catalysts were investigated in detai... A series of supported CeO2/TiO2 catalysts were prepared to explore the influence of CeO2 loading on these catalysts for the selective catalytic reduction of NO3 by NH3(NH3-SCR).The catalysts were investigated in detail by means of XRD,Raman,H2-TPR,NH3-TPD,XPS,in situ DRIFTS,and NH3-SCR reaction.The activity of the catalyst is closely related to the content of CeO2.When the loading of CeO2 is near the dispersion capacity(1.16 mmol Ce4+/100 m^2 TiO2),the catalytic activity is better.This may be because that the dispersed CeO2 is the active species and the catalyst has appropriate redox property,along with the larger amounts of surface Ce content and surface adsorbed oxygen species.Finally,a possible reaction mechanism via the Langmuir-Hinshelwood(L-H)mechanism is tentatively proposed to further understand the NH3-SCR reaction. 展开更多
关键词 CEO2 Selective catalytic reduction Redox property Dispersion capacity Structure-activity relationship Rare earths
原文传递
Synergistic effects of CeO_(2)/Cu_(2)O on CO catalytic oxidation:Electronic interaction and oxygen defect 被引量:1
6
作者 Chengyan Ge jingfang sun +3 位作者 Qing Tong Weixin Zou Lulu Li Lin Dong 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第8期1211-1218,共8页
For CO catalytic oxidation,Cu and Ce species are of great importance,between which the synergistic effect is worth investigating.In this work,CeO_(2)/Cu_(2)O with Cu_(2)O {111} and {100} planes were comparatively expl... For CO catalytic oxidation,Cu and Ce species are of great importance,between which the synergistic effect is worth investigating.In this work,CeO_(2)/Cu_(2)O with Cu_(2)O {111} and {100} planes were comparatively explored on CO catalytic oxidation to reveal the effects of interfacial electronic interactions and oxygen defects.The activity result demonstrates that CeO_(2)/o-Cu_(2)O {111} has superior performance compared with CeO_(2)/c-Cu_(2)O {100}.Credit to the coordination unsaturated copper atoms(Cu_(CUS)) on oCu_(2)O {111} surface,the interfacial electronic interactions on CeO_(2)/o-Cu_(2)O {111} are more obvious than those on CeO_(2)/c-Cu_(2)O {100},leading to richer oxygen defect generation,better redox and activation abilities of CO and O_(2) reactants.Furthermore,the reaction mechanism of CeO_(2)/o-Cu_(2)O {111} on CO oxidation is revealed,i.e.,CO and O_(2) are adsorbed on the Cucus on Cu_(2)O {111} and oxygen defect of CeO_(2),respectively,and then synergistically promote the CO oxidation to CO_(2).The work sheds light on the designing optimized ceria and copper-based catalysts and the mechanism of CO oxidation. 展开更多
关键词 CeO_(2)/Cu_(2)O{111}{100} Synergistic effect Interfacial electronic interaction Oxygen defect CO oxidation Rare earths
原文传递
Regeneration of deactivated CeCoxO2 catalyst by simple thermal treatment 被引量:1
7
作者 Yandi Cai Lihua Wang +3 位作者 Shuohan Yu jingfang sun Baochun Liu Lin Dong 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第8期899-905,I0003,共8页
Active species loss owing to reactant stream washing is a general problem which industrial catalysts suffer from.In case of catalysts synthesized by co-precipitation method,which have active species unused in bulk pha... Active species loss owing to reactant stream washing is a general problem which industrial catalysts suffer from.In case of catalysts synthesized by co-precipitation method,which have active species unused in bulk phase,can be regenerated by a simple thermal treatment that leads to active species in bulk phase migration to surface of the deactivated catalysts.In this work,the influence of regeneration temperature was investigated by employing ammonium hydroxide washing to simulate reactant stream washing of CeCoxO2 catalysts for NO+CO reaction.It is found that the deactivated catalyst can be regenerated by simple thermal treatment and increasing calcination temperature could accelerate the Co species migration from the bulk phase to surface of catalysts. 展开更多
关键词 NO+CO CEO2 Catalyst regeneration Thermal migration Rare earths
原文传递
Solid-phase impregnation promotes Ce doping in TiO_(2) for boosted denitration of CeO_(2)/TiO_(2) catalysts
8
作者 Wang Song Jiawei Ji +8 位作者 Kai Guo Xin Wang Xiaoqian Wei Yandi Cai Wei Tan Lulu Li jingfang sun Changjin Tang Lin Dong 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第2期935-938,共4页
CeO_(2)/TiO_(2)(denoted as Ce Ti) catalysts obtained by solid-phase impregnation behaved better in lowtemperature selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR) than that by conventional wet impregnati... CeO_(2)/TiO_(2)(denoted as Ce Ti) catalysts obtained by solid-phase impregnation behaved better in lowtemperature selective catalytic reduction of NO_(x)with NH_(3)(NH_(3)-SCR) than that by conventional wet impregnation.To explore the main factors for activity distinction,the texture property,CeO_(2)dispersion and structure changes of TiO_(2)were comprehensively analyzed.It was found that surface changes of TiO_(2)had a significant impact on the improved activity.From results of inductively coupled plasma atomic emission spectrometer (ICP-AES),diffuse reflectance UV-vis spectroscopy (UV-vis-DRS) and Raman,it was inferred that Ce ions were partially incorporated into TiO_(2)lattice,accompanied with the formation of defects and vacancies during solid-phase impregnation.Accordingly,Ce Ti catalysts from solid-phase impregnation exhibited superiority in adsorption and activation of reactants.Further result from monitoring the preparation process indicated that the evolved NO played an important role in promoting Ce doping through depriving oxygen atoms on TiO_(2)surface.The interaction between Ce and Ti was enhanced.The catalyst performed better in NH_(3)-SCR,especially at low temperature,which testified the solid-phase impregnation could be an effective method to modulate interface structure for designing efficient catalyst. 展开更多
关键词 CeO_(2)/TiO_(2) NH_(3)-SCR Solid-phase impregnation Interfacial interaction NO induced incorporation
原文传递
Deactivation induced by metal sulfate over MnCeOx catalyst in NH_(3)-SCR reaction at low temperature
9
作者 Qiao Xie Dongqi An +7 位作者 Linsen Zhou Tingzhen Li Zhenghua Hu Menghan Chen Menglan Ma Lei Zhang jingfang sun Lin Dong 《Journal of Rare Earths》 SCIE EI CAS 2024年第6期1056-1065,I0002,共11页
Sulfate adsorption is one of the factors that cause the poisoning of catalyst in the low-temperature NH_(3) selective catalytic reduction reaction(NH_(3)-SCR).In this paper,by controlling the co-adsorption time of SO_... Sulfate adsorption is one of the factors that cause the poisoning of catalyst in the low-temperature NH_(3) selective catalytic reduction reaction(NH_(3)-SCR).In this paper,by controlling the co-adsorption time of SO_(2) and O_(2) at 150℃,a range of sulfated MnCeOx catalysts with different contents of metal sulfate species were prepared to reveal the influence of metal sulfate species content on the catalytic performances and reaction mechanisms at low temperature.The catalytic activity below 250℃rapidly decreases with increasing metal sulfate species content.The results of characterizations shed light on the reduction of specific surface area,Mn^(4+)and Ce^(3+)content,and redox ability of MnCeOx owing to the formation of metal sulfate species.Further experiments reveal that metal sulfate species preferentially absorb on MnOx domains rather than on CeO_(2) domains,and the adsorbed metal sulfate species can suppress the Eley-Rideal and the Langmuir-Hinshelwood reaction mechanisms over the sulfated MnCeOx.All the above results are detrimental to the activity of sulfated MnCeOx in the low-temperature NH3-SCR reaction. 展开更多
关键词 NH_(3)selective catalytic reduction MnCeOx catalyst Sulfation Low-temperature activity SO_(2)poisoning Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部