期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mechanism of Cu(Ⅱ) adsorption inhibition on biochar by its aging process 被引量:21
1
作者 Yue Guo Wei Tang +2 位作者 jinggui wu Zhaoqin Huang Jingyu Dai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第10期2123-2130,共8页
Biochar exposed in the environment may experience a series of surface changes, which is called biochar aging. In order to study the effects of biochar aging on Cu(Ⅱ) adsorption, we analyzed the surface properties b... Biochar exposed in the environment may experience a series of surface changes, which is called biochar aging. In order to study the effects of biochar aging on Cu(Ⅱ) adsorption, we analyzed the surface properties before and after biochar aging with scanning electron microscopy(SEM) coupled to an energy-dispersive X-ray spectrometer(EDX) and diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS), and then explored the influence of the aging process on Cu(Ⅱ) adsorption by batch experiments. After the aging process, the oxygen concentration, phenolic hydroxyl groups, aromatic ethers and other oxygen-containing functional groups on the biochar surface increased, while carboxyl groups slightly decreased. Thus, over a range of pH, the cation exchange capacity(CEC) and adsorption capacity of Cu(Ⅱ) on the aged biochar were smaller than those of new biochar,indicating that when biochar is incubated at constant temperature and water holding capacity in the dark, the aging process may inhibit Cu(Ⅱ) adsorption. Meanwhile, the dissociation characteristics of oxygen-containing functional groups changed through the aging process, which may be the mechanism by which the biochar aging process inhibits the Cu(Ⅱ) adsorption. Carboxyl groups became more easily dissociated at low pH(3.3–5.0),and the variation of maximum adsorption capability(qm) of Cu(Ⅱ) on the old biochar was enlarged. Phenolic hydroxyl groups increased after the aging, making them and carboxyl groups more difficult to dissociate at high pH(5.0–6.8), and the variation of qmof Cu(Ⅱ) on the aged biochar was reduced. 展开更多
关键词 Biochar Aging Surface property Adsorption Cu(Ⅱ)
原文传递
Changes in soil fungal community on SOC and POM accumulation under different straw return modes in dryland farming
2
作者 Wei Fan jinggui wu 《Ecosystem Health and Sustainability》 SCIE 2021年第1期232-244,共13页
We conducted a 2.5-year field experiment to test the effects of straw incorporated evenly into the soil(EIS)on soil fungal community,SOC chemical composition,and particulate organic matter fractions via comparing with... We conducted a 2.5-year field experiment to test the effects of straw incorporated evenly into the soil(EIS)on soil fungal community,SOC chemical composition,and particulate organic matter fractions via comparing with no straw returning(CK),straw mulching(SM),straw plowed into the soil(SP),and identified the linkages between soil fungal community as well as organic C accumulation and POM formation.Our results showed that EIS treatment significantly increased the concentrations of SOC and the proportion of carbohydrate C,di-O-alkyl C,and O-alkyl C in SOC structure,increased the mass proportion and OC contents of MA(c)POM and mM-POM in the upper 40 cm of soil.Meanwhile,EIS treatment increased the relative abundance of Ascomycota,Zygomycota,Chytridiomycota,and Dothideomycetes in 0-20 cm depths,and also had the highest relative abundance of Glomeromycetes and Dothideomycetes in the 20-40 cm soil.Also,our study suggests that straw return enhanced the relative abundances of fungi involved in the carbon cycle and sequestration,including Zygomycota,Chytridiomycota,and Glomeromycota,and Ascomycota.The shifts in fungal community structure can accelerate organic C accumulation and the formation of soil particulate organic matter,especially in EIS treatment. 展开更多
关键词 Returning straw fungal community organic C accumulation particulate organic matter
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部