Inoculation with efficient microbes had been proved to be the most important way for the bioremediation of polluted environments. For the treatment of abandoned site of Beijing Coking Chemical Plant contaminated with ...Inoculation with efficient microbes had been proved to be the most important way for the bioremediation of polluted environments. For the treatment of abandoned site of Beijing Coking Chemical Plant contaminated with high level of high-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), a bacterial consortium capable of degrading HMW-PAHs, designated 1-18-1, was enriched and screened from HMW-PAHs contaminated soil. Its degrading ability was analyzed by high performance liquid chromatography (HPLC), and the community structure was investigated by construction and analyses of the 16S rRNA gene clone libraries (A, B and F) at different transfers. The results indicated that 1-18-1 was able to utilize pyrene, fluoranthene and benzo[a]pyrene as sole carbon and energy source for growth. The degradation rate of pyrene and fluoranthene reached 82.8% and 96.2% after incubation for 8 days at 30℃, respectively; while the degradation rate of benzo[a]pyrene was only 65.1% after incubation for 28 days at 30℃. Totally, 108, 100 and 100 valid clones were randomly selected and sequenced from the libraries A, B, and E Phylogenetic analyses showed that all the clones could be divided into 5 groups, Bacteroidetes, ct-Proteobacteria, Actinobacteria, β-Proteobacteda and γ- Proteobacteria. Sequence similarity analyses showed total 39 operational taxonomic units (OTUs) in the libraries. The predominant bacterial groups were α-Proteobacteria (19 OTUs, 48.7%), γ-Proteobacteria (90TUs, 23.1%) and β-Proteobacteria (80TUs, 20.5%). During the transfer process, the proportions of α-Proteobacteria and β-Proteobacteria increased greatly (from 47% to 93%), while γ-Proteobacteda decreased from 32% (library A) to 6% (library F); and Bacteroidetes group disappeared in libraries B and F.展开更多
Solubilizing experiments were carried out to evaluate the ability of biodiesel to remove polycyclic aromatic hydrocarbons(PAHs)from highly contaminated manufactured gas plant(MGP)and PAHs spiked soils with hydroxyprop...Solubilizing experiments were carried out to evaluate the ability of biodiesel to remove polycyclic aromatic hydrocarbons(PAHs)from highly contaminated manufactured gas plant(MGP)and PAHs spiked soils with hydroxypropyl-β-cyclodextrin(HPCD)and tween 80 as comparisons.Biodiesel displayed the highest solubilities of phenanthrene(420.7 mg·L^(-1)),pyrene(541.0 mg·L^(-1)),and benzo(a)pyrene(436.3 mg·L^(-1)).These corresponded to several fold increases relative to 10%HPCD and tween 80.Biodiesel showed a good efficiency for PAH removal from the spiked and MGP soils for both low molecular weight and high molecular weight PAHs at high concentrations.Biodiesel was the best agent for PAH removal from the spiked soils as compared with HPCD and tween 80;as over 77.9%of individual PAH were removed by biodiesel.Tween 80 also showed comparable capability with biodiesel for PAH solubilization at a concentration of 10%for the spiked soils.Biodiesel solubilized a wider range of PAHs as compared to HPCD and tween 80 for the MPG soils.At PAH concentrations of 229.6 and 996.9 mg·kg^(-1),biodiesel showed obvious advantage over the 10%HPCD and tween 80,because it removed higher than 80%of total PAH.In this study,a significant difference between PAH removals from the spiked and field MGP soils was observed;PAH removals from the MGP soil by HPCD and tween 80 were much lower than those from the spiked soil.These results demonstrate that the potential for utilizing biodiesel for remediation of highly PAH-contaminated soil has been established.展开更多
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(No. KSCS2-YW-G-055-01)the High-Tech Research and Development Program(863)of China(No.2006AA06Z316)the Program of Beijing Academy of Science Technology(No.IE012009610019-1)
文摘Inoculation with efficient microbes had been proved to be the most important way for the bioremediation of polluted environments. For the treatment of abandoned site of Beijing Coking Chemical Plant contaminated with high level of high-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), a bacterial consortium capable of degrading HMW-PAHs, designated 1-18-1, was enriched and screened from HMW-PAHs contaminated soil. Its degrading ability was analyzed by high performance liquid chromatography (HPLC), and the community structure was investigated by construction and analyses of the 16S rRNA gene clone libraries (A, B and F) at different transfers. The results indicated that 1-18-1 was able to utilize pyrene, fluoranthene and benzo[a]pyrene as sole carbon and energy source for growth. The degradation rate of pyrene and fluoranthene reached 82.8% and 96.2% after incubation for 8 days at 30℃, respectively; while the degradation rate of benzo[a]pyrene was only 65.1% after incubation for 28 days at 30℃. Totally, 108, 100 and 100 valid clones were randomly selected and sequenced from the libraries A, B, and E Phylogenetic analyses showed that all the clones could be divided into 5 groups, Bacteroidetes, ct-Proteobacteria, Actinobacteria, β-Proteobacteda and γ- Proteobacteria. Sequence similarity analyses showed total 39 operational taxonomic units (OTUs) in the libraries. The predominant bacterial groups were α-Proteobacteria (19 OTUs, 48.7%), γ-Proteobacteria (90TUs, 23.1%) and β-Proteobacteria (80TUs, 20.5%). During the transfer process, the proportions of α-Proteobacteria and β-Proteobacteria increased greatly (from 47% to 93%), while γ-Proteobacteda decreased from 32% (library A) to 6% (library F); and Bacteroidetes group disappeared in libraries B and F.
基金This work was supported by the National Natural Science Foundation of China(Grant No.20707030)the National High Technology Research and Development Program(863 program)of China(No.2008AA06Z331)the National Basic Research Program(973 Program)of China(No.2004CB418506).
文摘Solubilizing experiments were carried out to evaluate the ability of biodiesel to remove polycyclic aromatic hydrocarbons(PAHs)from highly contaminated manufactured gas plant(MGP)and PAHs spiked soils with hydroxypropyl-β-cyclodextrin(HPCD)and tween 80 as comparisons.Biodiesel displayed the highest solubilities of phenanthrene(420.7 mg·L^(-1)),pyrene(541.0 mg·L^(-1)),and benzo(a)pyrene(436.3 mg·L^(-1)).These corresponded to several fold increases relative to 10%HPCD and tween 80.Biodiesel showed a good efficiency for PAH removal from the spiked and MGP soils for both low molecular weight and high molecular weight PAHs at high concentrations.Biodiesel was the best agent for PAH removal from the spiked soils as compared with HPCD and tween 80;as over 77.9%of individual PAH were removed by biodiesel.Tween 80 also showed comparable capability with biodiesel for PAH solubilization at a concentration of 10%for the spiked soils.Biodiesel solubilized a wider range of PAHs as compared to HPCD and tween 80 for the MPG soils.At PAH concentrations of 229.6 and 996.9 mg·kg^(-1),biodiesel showed obvious advantage over the 10%HPCD and tween 80,because it removed higher than 80%of total PAH.In this study,a significant difference between PAH removals from the spiked and field MGP soils was observed;PAH removals from the MGP soil by HPCD and tween 80 were much lower than those from the spiked soil.These results demonstrate that the potential for utilizing biodiesel for remediation of highly PAH-contaminated soil has been established.