In today’s society, the incidence of cardiopulmonary diseases is increasing annually, seriously affecting patients’ quality of life. Therefore, developing a scientific and effective rehabilitation training program i...In today’s society, the incidence of cardiopulmonary diseases is increasing annually, seriously affecting patients’ quality of life. Therefore, developing a scientific and effective rehabilitation training program is of great significance. This study first analyzes the theoretical basis of cardiopulmonary rehabilitation training, including the effects of aerobic exercise, interval training, and strength training on cardiopulmonary function. Based on this, a comprehensive rehabilitation training program is designed, which includes personalized training plans, comprehensive interventions, multidisciplinary collaboration, patient education, and regular follow-up visits. The cardiopulmonary rehabilitation training plan developed in this study has certain scientific practicability, which provides a theoretical basis for cardiopulmonary rehabilitation training, and also provides a reference for medical institutions, rehabilitation centers and communities, which is helpful for promotion and application to a wider range of patients with cardiopulmonary diseases.展开更多
Biodiversity,large trees,and environmental conditions such as climate and soil have important effects on forest carbon stocks.However,recent studies in temperate forests suggest that the relative importance of these f...Biodiversity,large trees,and environmental conditions such as climate and soil have important effects on forest carbon stocks.However,recent studies in temperate forests suggest that the relative importance of these factors depends on tree mycorrhizal associations,whereby large-tree effects may be driven by ectomycorrhizal(EM)trees,diversity effects may be driven by arbuscular mycorrhizal(AM)trees,and environment effects may depend on differential climate and soil preferences of AM and EM trees.To test this hypothesis,we used forest-inventory data consisting of over 80,000 trees from 631 temperate-forest plots(30 m×30 m)across Northeast China to examine how biodiversity(species diversity and ecological uniqueness),large trees(top 1%of tree diameters),and environmental factors(climate and soil nutrients)differently regulate aboveground carbon stocks of AM trees,EM trees,and AM and EM trees combined(i.e.total aboveground carbon stock).We found that large trees had a positive effect on both AM and EM tree carbon stocks.However,biodiversity and environmental factors had opposite effects on AM vs.EM tree carbon stocks.Specifically,the two components of biodiversity had positive effects on AM tree carbon stocks,but negative effects on EM tree carbon stocks.Environmental heterogeneity(mean annual temperature and soil nutrients)also exhibited contrasting effects on AM and EM tree carbon stocks.Consequently,for the total carbon stock,the positive large-tree effect far surpasses the diversity and environment effect.This is mainly because when integrating AM and EM tree carbon stock into total carbon stock,the opposite diversity-effect(also environment-effect)on AM vs.EM tree carbon stock counteracts each other while the consistent positive large-tree effect on AM and EM tree carbon stock is amplified.In summary,this study emphasized a mycorrhizal viewpoint to better understand the determinants of overarching aboveground carbon profile across regional forests.展开更多
Recent studies on tropical cyclone(TC)intensity change indicate that the development of a vertically aligned TC circulation is a key feature of its rapid intensification(RI),however,understanding how vortex alignment ...Recent studies on tropical cyclone(TC)intensity change indicate that the development of a vertically aligned TC circulation is a key feature of its rapid intensification(RI),however,understanding how vortex alignment occurs remains a challenging topic in TC intensity change research.Based on the simulation outputs of North Atlantic Hurricane Wilma(2005)and western North Pacific Typhoon Rammasun(2014),vortex track oscillations at different vertical levels and their associated role in vortex alignment are examined to improve our understanding of the vortex alignment during RI of TCs with initial hurricane intensity.It is found that vortex tracks at different vertical levels oscillate consistently in speed and direction during the RI of the two simulated TCs.While the consistent track oscillation reduces the oscillation tilt during RI,the reduction of vortex tilt results mainly from the mean track before RI.It is also found that the vortex tilt is primarily due to the mean vortex track before and after RI.The track oscillations are closely associated with wavenumber-1 vortex Rossby waves that are dominant wavenumber-1 circulations in the TC inner-core region.This study suggests that the dynamics of the wavenumber-1 vortex Rossby waves play an important role in the regulation of the physical processes associated with the track oscillation and vertical alignment of TCs.展开更多
We described potential changes in the geo- graphic distribution and occurrence probability of Pinus koraiensis Sieb. et Zucc. and Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. in the counties of northeast Chin...We described potential changes in the geo- graphic distribution and occurrence probability of Pinus koraiensis Sieb. et Zucc. and Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. in the counties of northeast China. This information was used to identify priority areas for protection and provide protection and management recommendations within each studied county. The two species were mapped in 2884 study plots throughout this region over a 4-year period (38°40'N-53°30'N, 115°05'E- 135°02'E). We used the species distribution models (Maxent), systematic conservation planning models (Marxan), and Geographic Information Systems (ArcGIS 10.0). The distributions of two species were correlated in the study area, enabling unique and economically viable joint conservation measures to be implemented. Three models were combined to identify feasible priority con- servation sites. We used local spatial statistics to assess all identified conservation areas in relation to potential climate change based shifts in the geographic distribution of the two species. Model-based conservation strategies were used to identify effective measures to protect and utilize these two tree species in the study region. This study pre- sents a novel technique for assessing wild plant distribu- tions, in addition to serving as a model for the conservation of other species within the framework of general forest management, ecological construction, and geographical surveying.展开更多
Forests in Northeast China in the Greater and Lesser Khingan Mountains(GKM and LKM)account for nearly 1/3 of the total state-owned forests in the country.Regional and historical comparisons of forest plants and macrof...Forests in Northeast China in the Greater and Lesser Khingan Mountains(GKM and LKM)account for nearly 1/3 of the total state-owned forests in the country.Regional and historical comparisons of forest plants and macrofungi will favor biological conservation,forest management and economic development.A total of 1067 sampling plots were surveyed on forest composition and structure,with a macrofungi survey at Liangshui and Huzhong Nature Reserves in the center of two regions.Regional and historical differences of these parameters were analyzed with a redundancy ordination of their complex associations.There were 61-76 families,189-196 genera,and 369-384 species,which was only 1/3 of the historical records.The same dominant species were larch and birch with Korean pine(a climax species)less as expected from past surveys in the LKM.Shrub and herb species were different in the two regions,as expected from historical records.There was 10-50%lower species diversity(except for herb evenness),but 1.8-to 4-time higher macrofungi diversity in the GKM.Compared with the LKM,both tree heights and macrofungi density were higher.Nevertheless,current heights averaging 10 m are half of historical records(>20 m in the 1960s).Edible macrofungi were the highest proportion in both regions,about twice that of other fungal groups,hav-ing important roles in the local economy.A major factor explaining plant diversity variations in both regions was herb cover,followed by shrubs in the GKM and herb-dominant species in the LKM.Factors responsible for macrofungi variations were tree density and shrub height.Vaccinium vitis-idaea and Larix gmelinii in the GKM but tree size and diversity were important factors in the LKM.Our findings highlighted large spatial and historical differences between the GKM and LKM in plant-macrofungal composition,forest structure,and their complex associations,which will favor precise conservation and management of forest resources in two region in the future.展开更多
Sika deer are known to prefer oak leaves,which are rich in tannins and toxic to most mammals;however,the genetic mechanisms underlying their unique ability to adapt to living in the jungle are still unclear.In identif...Sika deer are known to prefer oak leaves,which are rich in tannins and toxic to most mammals;however,the genetic mechanisms underlying their unique ability to adapt to living in the jungle are still unclear.In identifying the mechanism responsible for the tolerance of a highly toxic diet,we have made a major advancement by explaining the genome of sika deer.We generated the first high-quality,chromosome-level genome assembly of sika deer and measured the correlation between tannin intake and RNA expression in 15 tissues through 180 experiments.Comparative genome analyses showed that the UGT and CYP gene families are functionally involved in the adaptation of sika deer to high-tannin food,especially the expansion of the UGT family 2 subfamily B of UGT genes.The first chromosome-level assembly and genetic characterization of the tolerance to a highly toxic diet suggest that the sika deer genome may serve as an essential resource for understanding evolutionary events and tannin adaptation.Our study provides a paradigm of comparative expressive genomics that can be applied to the study of unique biological features in non-model animals.展开更多
Pinus sylvestris var.mongolica(P.sylvestris)plantations are extensively established in the boreal zone.Increasing stand biomass of these plantations can effectively enhance carbon stock,which is crucial for mitigating...Pinus sylvestris var.mongolica(P.sylvestris)plantations are extensively established in the boreal zone.Increasing stand biomass of these plantations can effectively enhance carbon stock,which is crucial for mitigating climate change.However,the current understanding of optimizing plantation strategies to maximize stand biomass is primarily derived from experiments in tropical and subtropical zones,which is difficult to extend to the boreal due to substantial climatic differences.Based on a comprehensive dataset from 1,076 sample plots of P.sylvestris plantations in the boreal zone of China,we evaluated the effects of tree species richness and stand density on tree height,diameter at breast height(DBH),and stand biomass to investigate the optimal plantation strategy.Furthermore,we examined how these effects changed with stand age and investigated their relative importance.We found that monocultures at a high stand density of 2,000–2,500ha^(−1) were the optimal plantation strategy to maximize stand biomass(107.5Mg·ha^(−1)),and this held true at almost all stand ages.Unfortunately,this strategy resulted in low species richness and small individual trees(10.6m height and 9.8cm DBH),thus presenting a trade-off.In addition,as stand age increased,the effect of tree species richness on stand biomass shifted from positive to negative,but the effect of stand density was always positive.Overall,stand age had the greatest effect on stand biomass,followed by stand density and then tree species richness.Our findings reveal a distinct plantation strategy for optimizing stand biomass of P.sylvestris plantations in the boreal zone.More importantly,this study highlights that(1)maximizing stand biomass in the boreal zone may compromise tree species richness;(2)net effects of tree species richness on stand biomass are not always positive,as negative selection effects offset positive complementary effects.展开更多
Glycolytic metabolism enzymes have been implicated in the immunometabolism field through changes in metabolic status. PGK1 is a catalytic enzyme in the glycolytic pathway. Here, we set up a high-throughput screen plat...Glycolytic metabolism enzymes have been implicated in the immunometabolism field through changes in metabolic status. PGK1 is a catalytic enzyme in the glycolytic pathway. Here, we set up a high-throughput screen platform to identify PGK1 inhibitors. DC-PGKI is an ATPcompetitive inhibitor of PGK1 with an affinity of Kd= 99.08 nmol/L. DC-PGKI stabilizes PGK1in vitro and in vivo, and suppresses both glycolytic activity and the kinase function of PGK1. In addition,DC-PGKI unveils that PGK1 regulates production of IL-1β and IL-6 in LPS-stimulated macrophages.Mechanistically, inhibition of PGK1 with DC-PGKI results in NRF2(nuclear factor-erythroid factor 2-related factor 2, NFE2L2) accumulation, then NRF2 translocates to the nucleus and binds to the proximity region of Il-1β and Il-6 genes, and inhibits LPS-induced expression of these genes. DC-PGKI ameliorates colitis in the dextran sulfate sodium(DSS)-induced colitis mouse model. These data support PGK1 as a regulator of macrophages and suggest potential utility of PGK1 inhibitors in the treatment of inflammatory bowel disease.展开更多
Main observation and conclusion Nanoporous(NP)Ge/Ag composite is controllably fabricated via one simple dealloying method under mild conditions.After corroding the well-designed Ge9Ag1Al90 source alloy,the resulting G...Main observation and conclusion Nanoporous(NP)Ge/Ag composite is controllably fabricated via one simple dealloying method under mild conditions.After corroding the well-designed Ge9Ag1Al90 source alloy,the resulting Ge/Ag consists of the three dimensional(3D)interconnected Ge network skeleton with Ag nanoparticles uniformly dispersed onto the surface.Benefitting from unique 3D porous nanostructure and introduction of high-conductive Ag,the NP Ge/Ag composite exhibits much enhanced lithium storage performances by comparison with pure Ge material,including higher reversible capacitance,optimized rate capability as well as superior cycling performances.Besides,the NP Ge/Ag holds high cycling stability with large reversible capacity of 500 mA·h·g^(–1)remained under high current rate of 3200 mA·g^(-1)for an extended period of 300 loops.The Ge/Ag composite presents great potential in applications as an advanced anode candidate for lithium ion batteries in virtue of its excellent performances and green fabrication.展开更多
Utilization of high temperature cooling sources or natural energy sources can potentially contribute to improving energy efficiency in buildings.In this study,a dual-cavity window with gravity-driven cooling mechanism...Utilization of high temperature cooling sources or natural energy sources can potentially contribute to improving energy efficiency in buildings.In this study,a dual-cavity window with gravity-driven cooling mechanism(GDC window)was proposed to integrate the low-grade cooling sources into the glazing system for improving the thermal performance of the window.The embedded pipes circulated with low-grade cooling water are the key component of GDC window,which can remove the absorbed solar heat and reduce the heat gain through the window.A numerical model based on CFD simulation was developed to analyze the flow characteristic and heat transfer within the GDC window.Model validation was conducted by comparing the simulation results with measurement data obtained from previous study.Numerical simulations were carried out to compare the thermal performance of GDC window with that of conventional blinds window.Sensitivity analysis was performed to evaluate the influence of some design parameters on the flow characteristic and thermal performance of GDC window.The simulated results show that compared with the blinds window,the GDC window reduces 57.4%and 40.4% of heat gain in summer for the low-grade cooling water of 18℃ and 25℃;respectively.Reducing the flow resistance within the GDC window is significant for improving the heat removal performance of the embedded pipes.This study provides an alternative solution to integrate the low-grade cooling sources into the glazing system for enhancing the energy-efficiency and decreasing the building energy demand in cooling-dominated buildings.展开更多
Terrestrial species are predicted to migrate northward under global warming conditions,yet little is known about the direction and magnitude of change in microbial distribution patterns.In this continental-scale study...Terrestrial species are predicted to migrate northward under global warming conditions,yet little is known about the direction and magnitude of change in microbial distribution patterns.In this continental-scale study with more than 1600 forest soil samples,we verify the existence of core microbiota and lump them into a manageable number of eco-clusters based on microbial habitat preferences.By projecting the abundance differences of eco-clusters between future and current climatic conditions,we observed the potential warming-driven migration of the core microbiota under warming,partially verified by a field warming experiment at Southwest China.Specifically,the species that favor low p H are potentially expanding and moving northward to medium-latitudes(25°–45°N),potentially implying that warm temperate forest would be under threat of soil acidification with warming.The eco-cluster of high-p H with high-annual mean temperature(AMT)experienced significant abundance increases at middle-(35°–45°N)to high-latitudes(>45°N),especially under Representative Concentration Pathway(RCP)8.5,likely resulting in northward expansion.Furthermore,the eco-cluster that favors low-soil organic carbon(SOC)was projected to increase under warming scenarios at low-latitudes(<25°N),potentially an indicator of SOC storage accumulation in warmer areas.Meanwhile,at high-latitudes(>45°N)the changes in relative abundance of this eco-cluster is inversely related with the temperature variation trends,suggesting microbes-mediated soil organic carbon changes are more responsive to temperature variation in colder areas.These results have vital implications for the migration direction of microbial communities and its potential ecological consequences in future warming scenarios.展开更多
The construction of flexible platform possessing the functions of immobilizing, separating, rinsing, and high-throughput analysis plays a significant role in biological and clinical research. Herein, hollow- channel t...The construction of flexible platform possessing the functions of immobilizing, separating, rinsing, and high-throughput analysis plays a significant role in biological and clinical research. Herein, hollow- channel technique was integrated with lab-on-paper for the simultaneous determination of two different concentrations of Zn2+ based on the origami principle, in which microfiuidic channels were first patterned on a cellulose paper using commercial solid-state wax printer. Hollow-channels were created by laser cutting method as the role of both injecting ending and reaction tank. After screen printing three elec- trodes system, the resulting planar paper sheets were then folded into steric structures and functional- ized by in-situ synthesized reduced graphene oxide. As a proof-of-concept, such lab-on-paper device was employed in the ratiometric electrochemical monitoring of zinc ion from the environment and HepG2 cells extract, by combining with co-catalysis of porous metal-organic frameworks and hemin/ G-quadruplex toward H202 in the linear range of 0.1-7,000 nmol/L. The results indicated that integrating hollow-channel with steric lab-on-paper offered a new methodological approach for the development of metal ions monitoring research. It is believed that it could be useful for various point-of-care related research fields, such as, on-site environmental monitoring, food safety, and disease diagnosis.展开更多
Based on in situ generation of CdS quantum dots(QDs)and surface plasmon resonance(SPR)enhancement between CdS QDs and Ag nanoparticles(NPs),an innovative paper-supported photoelectrochemical(PEC)sensing platform was c...Based on in situ generation of CdS quantum dots(QDs)and surface plasmon resonance(SPR)enhancement between CdS QDs and Ag nanoparticles(NPs),an innovative paper-supported photoelectrochemical(PEC)sensing platform was constructed for real-time intracellular H_(2)S detection.SiO_(2)shell was coated on the Ag NPs to improve the stability of Ag NPs.H_(2)S was used to trigger the formation of CdS QDs,thereby inducing an improvement of photocurrent response.CdS QDs grown on the Ag@SiO_(2)core-shell NPs worked efficiently to absorb visible light.The resulting CdS QDs-Ag@SiO_(2)core-shell NPs exhibit improved PEC behavior,which was attributed to the surface plasmon-resonance effect of Ag NPs.Meanwhile,the separation of cell binding from the photoelectrode would eliminate the commonly existing affection dur-ing the biorecognition processes.This novel SPR-enhanced PEC sensing platform not only achieved satisfactory analysis results toward H_(2)S,but also showed excellent sensitivity,selectivity,low cost,and portable features.The strategy of the SPR through the in situ generation of semiconductor nanoparticles on the surface of noble metal semiconductor paves way for the improvements of PEC analytical performance.展开更多
文摘In today’s society, the incidence of cardiopulmonary diseases is increasing annually, seriously affecting patients’ quality of life. Therefore, developing a scientific and effective rehabilitation training program is of great significance. This study first analyzes the theoretical basis of cardiopulmonary rehabilitation training, including the effects of aerobic exercise, interval training, and strength training on cardiopulmonary function. Based on this, a comprehensive rehabilitation training program is designed, which includes personalized training plans, comprehensive interventions, multidisciplinary collaboration, patient education, and regular follow-up visits. The cardiopulmonary rehabilitation training plan developed in this study has certain scientific practicability, which provides a theoretical basis for cardiopulmonary rehabilitation training, and also provides a reference for medical institutions, rehabilitation centers and communities, which is helpful for promotion and application to a wider range of patients with cardiopulmonary diseases.
基金supported by the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant ZDBS-LY-DQC019)the National Key Research and Development Program of China(2023YFE0124300)+4 种基金the National Natural Science Foundation of China(32301344)Major Program of Institute of Applied EcologyChinese Academy of Sciences(IAEMP202201)supported by grants from the U.S.National Science Foundation(DEB 2240431)the Seeding Projects for Enabling Excellence and Distinction(SPEED)Program at Washington University in St.Louis。
文摘Biodiversity,large trees,and environmental conditions such as climate and soil have important effects on forest carbon stocks.However,recent studies in temperate forests suggest that the relative importance of these factors depends on tree mycorrhizal associations,whereby large-tree effects may be driven by ectomycorrhizal(EM)trees,diversity effects may be driven by arbuscular mycorrhizal(AM)trees,and environment effects may depend on differential climate and soil preferences of AM and EM trees.To test this hypothesis,we used forest-inventory data consisting of over 80,000 trees from 631 temperate-forest plots(30 m×30 m)across Northeast China to examine how biodiversity(species diversity and ecological uniqueness),large trees(top 1%of tree diameters),and environmental factors(climate and soil nutrients)differently regulate aboveground carbon stocks of AM trees,EM trees,and AM and EM trees combined(i.e.total aboveground carbon stock).We found that large trees had a positive effect on both AM and EM tree carbon stocks.However,biodiversity and environmental factors had opposite effects on AM vs.EM tree carbon stocks.Specifically,the two components of biodiversity had positive effects on AM tree carbon stocks,but negative effects on EM tree carbon stocks.Environmental heterogeneity(mean annual temperature and soil nutrients)also exhibited contrasting effects on AM and EM tree carbon stocks.Consequently,for the total carbon stock,the positive large-tree effect far surpasses the diversity and environment effect.This is mainly because when integrating AM and EM tree carbon stock into total carbon stock,the opposite diversity-effect(also environment-effect)on AM vs.EM tree carbon stock counteracts each other while the consistent positive large-tree effect on AM and EM tree carbon stock is amplified.In summary,this study emphasized a mycorrhizal viewpoint to better understand the determinants of overarching aboveground carbon profile across regional forests.
基金National Natural Science Foundation of China(Grant Nos:42150710531,42192551,61827901)supported this study.
文摘Recent studies on tropical cyclone(TC)intensity change indicate that the development of a vertically aligned TC circulation is a key feature of its rapid intensification(RI),however,understanding how vortex alignment occurs remains a challenging topic in TC intensity change research.Based on the simulation outputs of North Atlantic Hurricane Wilma(2005)and western North Pacific Typhoon Rammasun(2014),vortex track oscillations at different vertical levels and their associated role in vortex alignment are examined to improve our understanding of the vortex alignment during RI of TCs with initial hurricane intensity.It is found that vortex tracks at different vertical levels oscillate consistently in speed and direction during the RI of the two simulated TCs.While the consistent track oscillation reduces the oscillation tilt during RI,the reduction of vortex tilt results mainly from the mean track before RI.It is also found that the vortex tilt is primarily due to the mean vortex track before and after RI.The track oscillations are closely associated with wavenumber-1 vortex Rossby waves that are dominant wavenumber-1 circulations in the TC inner-core region.This study suggests that the dynamics of the wavenumber-1 vortex Rossby waves play an important role in the regulation of the physical processes associated with the track oscillation and vertical alignment of TCs.
基金supported by the National Basic Research Priorities Program of the Ministry of Science and Technology of China(2014FY110600)the National Basic Research Program of China(2011CB403200)National Natural Science Foundation of China(41330530)
文摘We described potential changes in the geo- graphic distribution and occurrence probability of Pinus koraiensis Sieb. et Zucc. and Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. in the counties of northeast China. This information was used to identify priority areas for protection and provide protection and management recommendations within each studied county. The two species were mapped in 2884 study plots throughout this region over a 4-year period (38°40'N-53°30'N, 115°05'E- 135°02'E). We used the species distribution models (Maxent), systematic conservation planning models (Marxan), and Geographic Information Systems (ArcGIS 10.0). The distributions of two species were correlated in the study area, enabling unique and economically viable joint conservation measures to be implemented. Three models were combined to identify feasible priority con- servation sites. We used local spatial statistics to assess all identified conservation areas in relation to potential climate change based shifts in the geographic distribution of the two species. Model-based conservation strategies were used to identify effective measures to protect and utilize these two tree species in the study region. This study pre- sents a novel technique for assessing wild plant distribu- tions, in addition to serving as a model for the conservation of other species within the framework of general forest management, ecological construction, and geographical surveying.
基金This work was supported by the National Natural Science Foundation of China(Grant No.41730641)Project from Ministry of Science and Technology of China(Basic Research project:2014FY110600 and 13-5 Project:2016YFA0600802).
文摘Forests in Northeast China in the Greater and Lesser Khingan Mountains(GKM and LKM)account for nearly 1/3 of the total state-owned forests in the country.Regional and historical comparisons of forest plants and macrofungi will favor biological conservation,forest management and economic development.A total of 1067 sampling plots were surveyed on forest composition and structure,with a macrofungi survey at Liangshui and Huzhong Nature Reserves in the center of two regions.Regional and historical differences of these parameters were analyzed with a redundancy ordination of their complex associations.There were 61-76 families,189-196 genera,and 369-384 species,which was only 1/3 of the historical records.The same dominant species were larch and birch with Korean pine(a climax species)less as expected from past surveys in the LKM.Shrub and herb species were different in the two regions,as expected from historical records.There was 10-50%lower species diversity(except for herb evenness),but 1.8-to 4-time higher macrofungi diversity in the GKM.Compared with the LKM,both tree heights and macrofungi density were higher.Nevertheless,current heights averaging 10 m are half of historical records(>20 m in the 1960s).Edible macrofungi were the highest proportion in both regions,about twice that of other fungal groups,hav-ing important roles in the local economy.A major factor explaining plant diversity variations in both regions was herb cover,followed by shrubs in the GKM and herb-dominant species in the LKM.Factors responsible for macrofungi variations were tree density and shrub height.Vaccinium vitis-idaea and Larix gmelinii in the GKM but tree size and diversity were important factors in the LKM.Our findings highlighted large spatial and historical differences between the GKM and LKM in plant-macrofungal composition,forest structure,and their complex associations,which will favor precise conservation and management of forest resources in two region in the future.
基金This work was supported by the National Key R&D Program of China(Grant No.2018YFD0502204)the Agricultural Science and Technology Innovation Program of China(Grant No.CAAS-ASTIP-2019-ISAPS)+1 种基金the Special Animal Genetic Resources Platform of National Scientific and Technical Infrastructure Center(Grant No.NSTIC TZDWZYK2019)the Sika deer Genome Project of China(Grant No.20140309016YY).
文摘Sika deer are known to prefer oak leaves,which are rich in tannins and toxic to most mammals;however,the genetic mechanisms underlying their unique ability to adapt to living in the jungle are still unclear.In identifying the mechanism responsible for the tolerance of a highly toxic diet,we have made a major advancement by explaining the genome of sika deer.We generated the first high-quality,chromosome-level genome assembly of sika deer and measured the correlation between tannin intake and RNA expression in 15 tissues through 180 experiments.Comparative genome analyses showed that the UGT and CYP gene families are functionally involved in the adaptation of sika deer to high-tannin food,especially the expansion of the UGT family 2 subfamily B of UGT genes.The first chromosome-level assembly and genetic characterization of the tolerance to a highly toxic diet suggest that the sika deer genome may serve as an essential resource for understanding evolutionary events and tannin adaptation.Our study provides a paradigm of comparative expressive genomics that can be applied to the study of unique biological features in non-model animals.
基金supported by the National Key Research and Development Program of China(No.2022YFF1300500)the Youth Innovation Promotion Association of CAS(No.2022195).
文摘Pinus sylvestris var.mongolica(P.sylvestris)plantations are extensively established in the boreal zone.Increasing stand biomass of these plantations can effectively enhance carbon stock,which is crucial for mitigating climate change.However,the current understanding of optimizing plantation strategies to maximize stand biomass is primarily derived from experiments in tropical and subtropical zones,which is difficult to extend to the boreal due to substantial climatic differences.Based on a comprehensive dataset from 1,076 sample plots of P.sylvestris plantations in the boreal zone of China,we evaluated the effects of tree species richness and stand density on tree height,diameter at breast height(DBH),and stand biomass to investigate the optimal plantation strategy.Furthermore,we examined how these effects changed with stand age and investigated their relative importance.We found that monocultures at a high stand density of 2,000–2,500ha^(−1) were the optimal plantation strategy to maximize stand biomass(107.5Mg·ha^(−1)),and this held true at almost all stand ages.Unfortunately,this strategy resulted in low species richness and small individual trees(10.6m height and 9.8cm DBH),thus presenting a trade-off.In addition,as stand age increased,the effect of tree species richness on stand biomass shifted from positive to negative,but the effect of stand density was always positive.Overall,stand age had the greatest effect on stand biomass,followed by stand density and then tree species richness.Our findings reveal a distinct plantation strategy for optimizing stand biomass of P.sylvestris plantations in the boreal zone.More importantly,this study highlights that(1)maximizing stand biomass in the boreal zone may compromise tree species richness;(2)net effects of tree species richness on stand biomass are not always positive,as negative selection effects offset positive complementary effects.
基金the National Key Research and Development Program of China (2021ZD0203900 to Cheng Luo)the National Natural Science Foundation of China (91853205, 81821005 to Cheng Luo)+1 种基金the Science and Technology Commission of Shanghai Municipality (19XD1404700 to Cheng Luo, China)the project of National Multidisciplinary Innovation Team of Traditional Chinese Medicine supported by National Administration of Traditional Chinese Medicine to Cheng Luo, the Lingang Laboratory, Grant No. LG-QS-202206-01.
文摘Glycolytic metabolism enzymes have been implicated in the immunometabolism field through changes in metabolic status. PGK1 is a catalytic enzyme in the glycolytic pathway. Here, we set up a high-throughput screen platform to identify PGK1 inhibitors. DC-PGKI is an ATPcompetitive inhibitor of PGK1 with an affinity of Kd= 99.08 nmol/L. DC-PGKI stabilizes PGK1in vitro and in vivo, and suppresses both glycolytic activity and the kinase function of PGK1. In addition,DC-PGKI unveils that PGK1 regulates production of IL-1β and IL-6 in LPS-stimulated macrophages.Mechanistically, inhibition of PGK1 with DC-PGKI results in NRF2(nuclear factor-erythroid factor 2-related factor 2, NFE2L2) accumulation, then NRF2 translocates to the nucleus and binds to the proximity region of Il-1β and Il-6 genes, and inhibits LPS-induced expression of these genes. DC-PGKI ameliorates colitis in the dextran sulfate sodium(DSS)-induced colitis mouse model. These data support PGK1 as a regulator of macrophages and suggest potential utility of PGK1 inhibitors in the treatment of inflammatory bowel disease.
基金supported by National Natural Science Foundation of China(51772133)Shandong Province(ZR2017JL022)+1 种基金the Taishan Scholar Project of Shandong Province,the project of"20 Items of University"of Jinan(2018GXRC001)Case-by-Case Project for Top Outstanding Talents of Jinan.
文摘Main observation and conclusion Nanoporous(NP)Ge/Ag composite is controllably fabricated via one simple dealloying method under mild conditions.After corroding the well-designed Ge9Ag1Al90 source alloy,the resulting Ge/Ag consists of the three dimensional(3D)interconnected Ge network skeleton with Ag nanoparticles uniformly dispersed onto the surface.Benefitting from unique 3D porous nanostructure and introduction of high-conductive Ag,the NP Ge/Ag composite exhibits much enhanced lithium storage performances by comparison with pure Ge material,including higher reversible capacitance,optimized rate capability as well as superior cycling performances.Besides,the NP Ge/Ag holds high cycling stability with large reversible capacity of 500 mA·h·g^(–1)remained under high current rate of 3200 mA·g^(-1)for an extended period of 300 loops.The Ge/Ag composite presents great potential in applications as an advanced anode candidate for lithium ion batteries in virtue of its excellent performances and green fabrication.
基金This research has received the support from the National Natural Science Foundation of China(No.51808239)the Hong Kong Scholars Program(No.XJ2019044).
文摘Utilization of high temperature cooling sources or natural energy sources can potentially contribute to improving energy efficiency in buildings.In this study,a dual-cavity window with gravity-driven cooling mechanism(GDC window)was proposed to integrate the low-grade cooling sources into the glazing system for improving the thermal performance of the window.The embedded pipes circulated with low-grade cooling water are the key component of GDC window,which can remove the absorbed solar heat and reduce the heat gain through the window.A numerical model based on CFD simulation was developed to analyze the flow characteristic and heat transfer within the GDC window.Model validation was conducted by comparing the simulation results with measurement data obtained from previous study.Numerical simulations were carried out to compare the thermal performance of GDC window with that of conventional blinds window.Sensitivity analysis was performed to evaluate the influence of some design parameters on the flow characteristic and thermal performance of GDC window.The simulated results show that compared with the blinds window,the GDC window reduces 57.4%and 40.4% of heat gain in summer for the low-grade cooling water of 18℃ and 25℃;respectively.Reducing the flow resistance within the GDC window is significant for improving the heat removal performance of the embedded pipes.This study provides an alternative solution to integrate the low-grade cooling sources into the glazing system for enhancing the energy-efficiency and decreasing the building energy demand in cooling-dominated buildings.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDB15010300)the National Science Foundation of China(U1602234,41807316,41471218,41501282,and 31870467)+1 种基金the CAS 135 project(2017XTBG-F01)the National Key Research and Development Program(2016YFC0500702)。
文摘Terrestrial species are predicted to migrate northward under global warming conditions,yet little is known about the direction and magnitude of change in microbial distribution patterns.In this continental-scale study with more than 1600 forest soil samples,we verify the existence of core microbiota and lump them into a manageable number of eco-clusters based on microbial habitat preferences.By projecting the abundance differences of eco-clusters between future and current climatic conditions,we observed the potential warming-driven migration of the core microbiota under warming,partially verified by a field warming experiment at Southwest China.Specifically,the species that favor low p H are potentially expanding and moving northward to medium-latitudes(25°–45°N),potentially implying that warm temperate forest would be under threat of soil acidification with warming.The eco-cluster of high-p H with high-annual mean temperature(AMT)experienced significant abundance increases at middle-(35°–45°N)to high-latitudes(>45°N),especially under Representative Concentration Pathway(RCP)8.5,likely resulting in northward expansion.Furthermore,the eco-cluster that favors low-soil organic carbon(SOC)was projected to increase under warming scenarios at low-latitudes(<25°N),potentially an indicator of SOC storage accumulation in warmer areas.Meanwhile,at high-latitudes(>45°N)the changes in relative abundance of this eco-cluster is inversely related with the temperature variation trends,suggesting microbes-mediated soil organic carbon changes are more responsive to temperature variation in colder areas.These results have vital implications for the migration direction of microbial communities and its potential ecological consequences in future warming scenarios.
基金supported by the National Natural Science Foundation of China(51502112,21475052)Key Research and Development Program of Shandong Province,China(2016GGX102035)Postdoctoral Science Foundation of University of Jinan,China(XBH1511)
文摘The construction of flexible platform possessing the functions of immobilizing, separating, rinsing, and high-throughput analysis plays a significant role in biological and clinical research. Herein, hollow- channel technique was integrated with lab-on-paper for the simultaneous determination of two different concentrations of Zn2+ based on the origami principle, in which microfiuidic channels were first patterned on a cellulose paper using commercial solid-state wax printer. Hollow-channels were created by laser cutting method as the role of both injecting ending and reaction tank. After screen printing three elec- trodes system, the resulting planar paper sheets were then folded into steric structures and functional- ized by in-situ synthesized reduced graphene oxide. As a proof-of-concept, such lab-on-paper device was employed in the ratiometric electrochemical monitoring of zinc ion from the environment and HepG2 cells extract, by combining with co-catalysis of porous metal-organic frameworks and hemin/ G-quadruplex toward H202 in the linear range of 0.1-7,000 nmol/L. The results indicated that integrating hollow-channel with steric lab-on-paper offered a new methodological approach for the development of metal ions monitoring research. It is believed that it could be useful for various point-of-care related research fields, such as, on-site environmental monitoring, food safety, and disease diagnosis.
基金the program for Taishan Scholar of Shandong Province(ts201712048)National Natural Science Foundation of China(21874055,51632003)Supports from the 111 Project of International Corporation on Advanced Cement-based Materials(No.D17001)is greatly appreciated.
文摘Based on in situ generation of CdS quantum dots(QDs)and surface plasmon resonance(SPR)enhancement between CdS QDs and Ag nanoparticles(NPs),an innovative paper-supported photoelectrochemical(PEC)sensing platform was constructed for real-time intracellular H_(2)S detection.SiO_(2)shell was coated on the Ag NPs to improve the stability of Ag NPs.H_(2)S was used to trigger the formation of CdS QDs,thereby inducing an improvement of photocurrent response.CdS QDs grown on the Ag@SiO_(2)core-shell NPs worked efficiently to absorb visible light.The resulting CdS QDs-Ag@SiO_(2)core-shell NPs exhibit improved PEC behavior,which was attributed to the surface plasmon-resonance effect of Ag NPs.Meanwhile,the separation of cell binding from the photoelectrode would eliminate the commonly existing affection dur-ing the biorecognition processes.This novel SPR-enhanced PEC sensing platform not only achieved satisfactory analysis results toward H_(2)S,but also showed excellent sensitivity,selectivity,low cost,and portable features.The strategy of the SPR through the in situ generation of semiconductor nanoparticles on the surface of noble metal semiconductor paves way for the improvements of PEC analytical performance.