期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
LATTICE DEFORMATION AND PHASE TRANSFORMATION FROM NANO-SCALE ANATASE TO NANO-SCALE RUTILE TiO_2 PREPARED BY A SOL-GEL TECHNIQUE 被引量:1
1
作者 YanqunShao DianTang +2 位作者 jinghuasun YekunLee WeihaoXiong 《China Particuology》 SCIE EI CAS CSCD 2004年第3期119-123,共5页
Nano-scale rutile phase was transformed from nano-scale anatase upon heating, which was prepared by a sol-gel technique. The XRD data corresponding to the anatase and rutile phases were analyzed and the grain sizes of... Nano-scale rutile phase was transformed from nano-scale anatase upon heating, which was prepared by a sol-gel technique. The XRD data corresponding to the anatase and rutile phases were analyzed and the grain sizes of as-derived phases were calculated by Sherrer equation. The lattice parameters of the as-derived anatase and rutile unit cells were calculated and compared with those of standard lattice parameters on PDF cards. It was shown that the smaller the grain sizes, the larger the lattice deformation. The lattice parameter a has the negative deviation from the standard and the lattice parameter c has the positive deviation for both phases. The particles sizes had preferential in-fluence on the longer parameter between the lattice parameters of a and c. With increasing temperatures, the lattice parameters of a and c in both phases approached to the equilibrium state. The larger lattice deformation facilitated the nucleation process, which lowered the transformation temperature. During the transformation from nano-scale anatase to rutile, besides the mechanism involving retention of the {112} pseudo-close-packed planes of oxygen in anatase as the {100} pseudo-close-packed planes in rutile, the new phase occurred by relaxation of lattice deformation and adjustment of the atomic sites in parent phase. The orientation relationships were suggested to be anatase {101}//rutile {101} and anatase <201>//rutile<111>, and the habit plane was anatase (101). 展开更多
关键词 nano-scale materials ANATASE RUTILE phase transformation TIO2 sol-gel technique
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部