期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hierarchical coupling effect in hollow Ni/NiFe2O4-CNTs microsphere via spray-drying for enhanced oxygen evolution electrocatalysis 被引量:3
1
作者 Xuefeng Yu Guanyu Chen +11 位作者 Yizhe Wang Jiwei Liu Ke Pei Yunhao Zhao Wenbin You Lei Wang Jie Zhang Linshen Xing jingjun ding Guangzhou ding Min Wang Renchao Che 《Nano Research》 SCIE EI CAS CSCD 2020年第2期437-446,共10页
Design and fabrication of cost-effective transition metal and their oxides-based nanocomposites are of paramount significance for metal-air batteries and water-splitting.However,the traditional optimized designs for n... Design and fabrication of cost-effective transition metal and their oxides-based nanocomposites are of paramount significance for metal-air batteries and water-splitting.However,the traditional optimized designs for nanostructure are complicated,low-efficient and underperform for wide-scale applications.Herein,a novel hierarchical framework of hollow Ni/NiFe2O4-CNTs compositemicrosphere forcibly-assembled by zero-dimensional(OD)Ni/NiFo204 nanoparticle(<16 nm)and one-dimensional(1D)self-supporting CNTs was fabricated successfully.Benefitted from the unique nanostructure,such monohybrids can achieve remarkable oxygen evolution reaction(OER)performance in alkaline media with a low overpotential and superior durability,which exceeds most of the commercial catalysts based on IrO/RuO2 or other non-noble metal nanomaterials.The enhanced OER performance of Ni/NiFe2OA-CNTs composite is mainly ascribed to the increased catalytic activity and the optimized conductivity induced by the effects of strong hierarchical coupling and charge transfers between CNTs and Ni/NiFe204 nanoparticles.These effects are greatly boosted by the polarized heterojunction interfaces confirmed by electron holography.The density functional theory(DFT)calculation indicates the epitaxial Ni further enriches the intrinsic electrons contents of NiFe204 and thus accelerates absorption/desorption kinetics of OER intermediates.This work hereby paves a facile route to construct the hollow composite microsphere with excellent OER electrocatalytic activity based on non-noble metal oxide/CNTs. 展开更多
关键词 SPRAY-DRYING novel structure oxygen evolution reaction(OER) electron holography composite microsphere
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部