The effects of different NH3-plasma treatment procedures on interracial and electrical properties of Ge MOS capacitors with stacked gate dielectric of HtTiON/TaON were investigated. The NH3-plasma treatment was perfor...The effects of different NH3-plasma treatment procedures on interracial and electrical properties of Ge MOS capacitors with stacked gate dielectric of HtTiON/TaON were investigated. The NH3-plasma treatment was performed at different steps during fabrication of the stacked gate dielectric, i.e. before or after interlayer (TaON) deposition, or after deposition ofhigh-k dielectric (HfriON). It was found that the excellent interface quality with an interface-state density of 4.79 × 101l eV-lcm-2 and low gate leakage current (3.43 ×10-5 A/cm2 at Vg = 1 V) could be achieved for the sample with NH3-plasma treatment directly on the Ge surface before TaON deposition. The involved mechanisms are attributed to the fact that the NH3-plasma can directly react with the Ge surface to form more Ge-N bonds, i.e. more GeOxNy, which effectively blocks the inter-diffusion of elements and suppresses the formation of unstable GeOx interfacial layer, and also passivates oxygen vacancies and dangling bonds near/at the interface due to more N incorporation and decomposed H atoms from the NH3-plasma.展开更多
The GaAs MOS capacitor was fabricated with HfTiON as high-k gate dielectric and NH3-plasma-treated ZnON as interfacial passivation layer (IPL), and its interracial and electrical properties are investigated compared...The GaAs MOS capacitor was fabricated with HfTiON as high-k gate dielectric and NH3-plasma-treated ZnON as interfacial passivation layer (IPL), and its interracial and electrical properties are investigated compared to its counterparts with ZnON IPL but no NH3-plasma treatment and without ZnON IPL and no plasma treatment. Experimental results show that low interface-state density near midgap (1.17×10^12 cm^-2eV^-1) and small gate leakage current density have been achieved for the GaAs MOS device with the stacked gate dielectric of Hf-TiON/ZnON plus NH3-plasma treatment. These improvements could be ascribed to the fact that the ZnON IPL can effectively block in-diffusion of oxygen atoms and out-diffusion of Ga and As atoms, and the NH3-plasma treatment can provide not only N atoms but also H atoms and NH radicals, which is greatly beneficial to removal of defective Ga/As oxides and As-As band, giving a high-quality ZnON/GaAs interface.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61176100,61274112)
文摘The effects of different NH3-plasma treatment procedures on interracial and electrical properties of Ge MOS capacitors with stacked gate dielectric of HtTiON/TaON were investigated. The NH3-plasma treatment was performed at different steps during fabrication of the stacked gate dielectric, i.e. before or after interlayer (TaON) deposition, or after deposition ofhigh-k dielectric (HfriON). It was found that the excellent interface quality with an interface-state density of 4.79 × 101l eV-lcm-2 and low gate leakage current (3.43 ×10-5 A/cm2 at Vg = 1 V) could be achieved for the sample with NH3-plasma treatment directly on the Ge surface before TaON deposition. The involved mechanisms are attributed to the fact that the NH3-plasma can directly react with the Ge surface to form more Ge-N bonds, i.e. more GeOxNy, which effectively blocks the inter-diffusion of elements and suppresses the formation of unstable GeOx interfacial layer, and also passivates oxygen vacancies and dangling bonds near/at the interface due to more N incorporation and decomposed H atoms from the NH3-plasma.
基金supported by the National Natural Science Foundation of China(Nos.61176100,61274112,61404055)
文摘The GaAs MOS capacitor was fabricated with HfTiON as high-k gate dielectric and NH3-plasma-treated ZnON as interfacial passivation layer (IPL), and its interracial and electrical properties are investigated compared to its counterparts with ZnON IPL but no NH3-plasma treatment and without ZnON IPL and no plasma treatment. Experimental results show that low interface-state density near midgap (1.17×10^12 cm^-2eV^-1) and small gate leakage current density have been achieved for the GaAs MOS device with the stacked gate dielectric of Hf-TiON/ZnON plus NH3-plasma treatment. These improvements could be ascribed to the fact that the ZnON IPL can effectively block in-diffusion of oxygen atoms and out-diffusion of Ga and As atoms, and the NH3-plasma treatment can provide not only N atoms but also H atoms and NH radicals, which is greatly beneficial to removal of defective Ga/As oxides and As-As band, giving a high-quality ZnON/GaAs interface.