The effects of working pressure on the component, surface morphology, surface roughness, and deposition rate of glow discharge polymer (GDP) films by a trans-2-butene/hydrogen gas mixture were investigated based on ...The effects of working pressure on the component, surface morphology, surface roughness, and deposition rate of glow discharge polymer (GDP) films by a trans-2-butene/hydrogen gas mixture were investigated based on plasma characteristics diagnosis. The composition and ion energy distributions of a multi-carbon (CaHs/H2) plasma mixture at different working pressures were diagnosed by an energy-resolved mass spectrometer (MS) during the GDP film deposition process. The Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (SEM) and white-fight interferometer (WLI) results were obtained to investigate the structure, morphology and roughness characterization of the deposited films, respectively. It was found that the degree of ionization of the C4H8/H2 plasma reduces with an increase in the working pressure. At a low working pressure, the C-H fragments exhibited small-mass and high ion energy in plasma. In this case, the film had a low CH3/CH2 ratio, and displayed a smooth surface without any holes, cracks or asperities. While the working pressure increased to 15 Pa, the largest number of large-mass fragments led to the deposition rate reaching a maximum of 2.11 #m h-1, and to hole defects on the film surface. However, continuing to increase the working pressure, the film surface became smooth again, and the interface between clusters became inconspicuous without etching pits.展开更多
Essential oil(EO)has significant antifungal activity.However,there is limited information on the mechanism of the synergistic antifungal effect of the effective components of EO against fungi.In the present study,mole...Essential oil(EO)has significant antifungal activity.However,there is limited information on the mechanism of the synergistic antifungal effect of the effective components of EO against fungi.In the present study,molecular electrostatic potential and molecular docking were used for the first time to investigate the synergistic antifungal mechanism of eugenol and citral small molecule(C_(EC))against Penicillium roqueforti.The results showed that the C_(EC)treatment made the activity ofβ-(1,3)-glucan synthase(GS)and chitin synthase(CS)decreas by 20.2%and 11.1%,respectively,and the contents of which decreased by 85.0%and 27.9%,respectively compared with the control group.Molecular docking revealed that C EC small molecules could bind to GS and CS through different amino acid residues,inhibiting their activity and synthesis.The C EC can combine with tryptophan,tyrosine,and phenylalanine in the cell membrane,causing damage to the cell membrane.The binding sites between small molecules and amino acids were mainly around the OH group.In addition,C EC affected the energy metabolism system and inhibited the glycolysis pathway.Simultaneously,C EC treatment reduced the ergosterol content in the cell membrane by 58.2%compared with the control group.Finally,changes in𝛽-galactosidase,metal ion leakage,and relative conductivity confirmed the destruction of the cell membrane,which resulted in the leakage of cell contents.The above results showed that C EC can kill P.roqueforti by inhibiting energy metabolism and destroying the integrity of the cell membrane.展开更多
This study uses methods,such as a nearest proximity index,nuclear density,spatial interpolation,buffering zone,and overlay analysis,based on an exploratory spatial data analysis tool.It focuses on a large commercial f...This study uses methods,such as a nearest proximity index,nuclear density,spatial interpolation,buffering zone,and overlay analysis,based on an exploratory spatial data analysis tool.It focuses on a large commercial facility in which a mathematical analysis is conducted on its spatial patterns.In the study,45 large-scale retail commercial facilities(LSRCFs)in the Gulou District,Nanjing,China,were chosen,and the spatial concentration,density,and structure of the LSRCFs in this area were analyzed.Three additional factors,namely,population,transportation,and consumption,were examined to determine their impact on the spatial patterns of the LSRCFs.Finally,this study recommends a spatial layout for the future of the Gulou District according to the analysis results.展开更多
基金financially supported by National Natural Science Foundation of China (No. 51401194)
文摘The effects of working pressure on the component, surface morphology, surface roughness, and deposition rate of glow discharge polymer (GDP) films by a trans-2-butene/hydrogen gas mixture were investigated based on plasma characteristics diagnosis. The composition and ion energy distributions of a multi-carbon (CaHs/H2) plasma mixture at different working pressures were diagnosed by an energy-resolved mass spectrometer (MS) during the GDP film deposition process. The Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (SEM) and white-fight interferometer (WLI) results were obtained to investigate the structure, morphology and roughness characterization of the deposited films, respectively. It was found that the degree of ionization of the C4H8/H2 plasma reduces with an increase in the working pressure. At a low working pressure, the C-H fragments exhibited small-mass and high ion energy in plasma. In this case, the film had a low CH3/CH2 ratio, and displayed a smooth surface without any holes, cracks or asperities. While the working pressure increased to 15 Pa, the largest number of large-mass fragments led to the deposition rate reaching a maximum of 2.11 #m h-1, and to hole defects on the film surface. However, continuing to increase the working pressure, the film surface became smooth again, and the interface between clusters became inconspicuous without etching pits.
基金supported by the National Natural Science Foundation of China(32202192)Special fund for Taishan Scholars Project,and Shandong Provincial Natural Science Foundation(ZR2020MC213).
文摘Essential oil(EO)has significant antifungal activity.However,there is limited information on the mechanism of the synergistic antifungal effect of the effective components of EO against fungi.In the present study,molecular electrostatic potential and molecular docking were used for the first time to investigate the synergistic antifungal mechanism of eugenol and citral small molecule(C_(EC))against Penicillium roqueforti.The results showed that the C_(EC)treatment made the activity ofβ-(1,3)-glucan synthase(GS)and chitin synthase(CS)decreas by 20.2%and 11.1%,respectively,and the contents of which decreased by 85.0%and 27.9%,respectively compared with the control group.Molecular docking revealed that C EC small molecules could bind to GS and CS through different amino acid residues,inhibiting their activity and synthesis.The C EC can combine with tryptophan,tyrosine,and phenylalanine in the cell membrane,causing damage to the cell membrane.The binding sites between small molecules and amino acids were mainly around the OH group.In addition,C EC affected the energy metabolism system and inhibited the glycolysis pathway.Simultaneously,C EC treatment reduced the ergosterol content in the cell membrane by 58.2%compared with the control group.Finally,changes in𝛽-galactosidase,metal ion leakage,and relative conductivity confirmed the destruction of the cell membrane,which resulted in the leakage of cell contents.The above results showed that C EC can kill P.roqueforti by inhibiting energy metabolism and destroying the integrity of the cell membrane.
文摘This study uses methods,such as a nearest proximity index,nuclear density,spatial interpolation,buffering zone,and overlay analysis,based on an exploratory spatial data analysis tool.It focuses on a large commercial facility in which a mathematical analysis is conducted on its spatial patterns.In the study,45 large-scale retail commercial facilities(LSRCFs)in the Gulou District,Nanjing,China,were chosen,and the spatial concentration,density,and structure of the LSRCFs in this area were analyzed.Three additional factors,namely,population,transportation,and consumption,were examined to determine their impact on the spatial patterns of the LSRCFs.Finally,this study recommends a spatial layout for the future of the Gulou District according to the analysis results.