期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Supramolecular electrostatic self-assembly of mesoporous thin-walled graphitic carbon nitride microtubes for highly efficient visible-light photocatalytic activities 被引量:1
1
作者 Yilin chen Xingchen He +5 位作者 Dongsheng Guo Yanqin Cai jingling chen Yun Zheng Bifen Gao Bizhou Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期214-223,共10页
For efficient solar energy conversion,the morphology engineering of hollow graphitic carbon nitride(gC3 N4)is one of the promising approachs benefiting from abundant exposed active sites and short photocarrier transpo... For efficient solar energy conversion,the morphology engineering of hollow graphitic carbon nitride(gC3 N4)is one of the promising approachs benefiting from abundant exposed active sites and short photocarrier transport distances,but is difficult to control on account of easy structural collapse.Herein,a facile supramolecular electrostatic self-assembly strategy has been developed for the first time to fabricate mesoporous thin-walled g-C3N4 microtubes(mtw-CNT)with shell thickness of ca.13 nm.The morphological control of g-C3N4 enhances specific surface area by 12 times,induces stronger optical absorption,widens bandgap by 0.18 e V,improves photocurrent density by 2.5 times,and prolongs lifetimes of charge carriers from bulk to surface,compared with those of bulk g-C3N4.As a consequence,the transformed g-C3N4 exhibits the optimum photocatalytic H2-production rate of 3.99 mmol·h^-1·g^-1(λ>420 nm)with remarkable apparent quantum efficiency of 8.7%(λ=420±15 nm)and long-term stability.Moreover,mtw-CNT also achieves high photocatalytic CO2-to-CO selectivity of 96%(λ>420 nm),much better than those on the most previously reported porous g-C3N4 photocatalysts prepared by the conventional hard-templating and soft-templating methods. 展开更多
关键词 Graphitic carbon nitride Thin wall Mesoporous microtube H2 production CO2 reduction Photocatalysis
下载PDF
Hydrophobic interaction membrane chromatography for bioseparation and responsive polymer ligands involved
2
作者 jingling chen Rong PENG Xiaonong chen 《Frontiers of Materials Science》 SCIE CSCD 2017年第3期197-214,共18页
Hydrophobic interaction chromatography (HIC) is a rapid growing bioseparation technique, which separates biomolecules, such as therapeutic proteins and antibodys, based on the reversible hydrophobic interaction betw... Hydrophobic interaction chromatography (HIC) is a rapid growing bioseparation technique, which separates biomolecules, such as therapeutic proteins and antibodys, based on the reversible hydrophobic interaction between immobilized hydrophobic ligands on chromatographic resin spheres and non-polar regions of solute molecule. In this review, the fundamental concepts of HIC and the factors that may affect purification efficiency of HIC is summarized, followed by the comparison of HIC with affinity chromatography and ion-exchange chromatography. Hydrophobic interaction membrane chromatography (HIMC) combines the advantages of HIC and membrane process and has showed great potential in bioseparation. For better understanding of HIMC, this review presents an overview of two main concerns about HIMC, i.e. membrane materials and hydrophobic ligands. Specifically, cellulose fiber-based membrane substrate and environment-responsive ligands are emphasized. 展开更多
关键词 hydrophobic interaction membrane chromatography BIOSEPARATION MEMBRANE environmental response ligand
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部