The Bloch band theory and Brillouin zone(BZ)that characterize wave-like behaviors in periodic mediums are two cornerstones of contemporary physics,ranging from condensed matter to topological physics.Recent theoretica...The Bloch band theory and Brillouin zone(BZ)that characterize wave-like behaviors in periodic mediums are two cornerstones of contemporary physics,ranging from condensed matter to topological physics.Recent theoretical breakthrough revealed that,under the projective symmetry algebra enforced by artificial gauge fields,the usual two-dimensional(2D)BZ(orientable Brillouin two-torus)can be fundamentally modified to a non-orientable Brillouin Klein bottle with radically distinct manifold topology.However,the physical consequence of artificial gauge fields on the more general three-dimensional(3D)BZ(orientable Brillouin three-torus)was so far missing.Here,we theoretically discovered and experimentally observed that the fundamental domain and topology of the usual 3D BZ can be reduced to a non-orientable Brillouin Klein space or an orientable Brillouin half-turn space in a 3D acoustic crystal with artificial gauge fields.We experimentally identify peculiar 3D momentum-space non-symmorphic screw rotation and glide reflection symmetries in the measured band structures.Moreover,we experimentally demonstrate a novel stacked weak Klein bottle insulator featuring a nonzero Z2 topological invariant and self-collimated topological surface states at two opposite surfaces related by a nonlocal twist,radically distinct from all previous 3D topological insulators.Our discovery not only fundamentally modifies the fundamental domain and topology of 3D BZ,but also opens the door towards a wealth of previously overlooked momentum-space multidimensional manifold topologies and novel gaugesymmetry-enriched topological physics and robust acoustic wave manipulations beyond the existing paradigms.展开更多
The role of tropical forests in the global carbon budget remains controversial,as carbon emissions from deforestation are highly uncertain.This high uncertainty arises from the use of either fixed forest carbon stock ...The role of tropical forests in the global carbon budget remains controversial,as carbon emissions from deforestation are highly uncertain.This high uncertainty arises from the use of either fixed forest carbon stock density or maps generated from satellite-based optical reflectance with limited sensitivity to biomass to generate accurate estimates of emissions from deforestation.New space missions aiming to accurately map the carbon stock density rely on direct measurements of the spatial structures of forests using lidar and radar.We found that lost forests are special cases,and their spatial structures can be directly measured by combining archived data acquired before and after deforestation by space missions principally aimed at measuring topography.Thus,using biomass mapping,we obtained new estimates of carbon loss from deforestation ahead of forthcoming space missions.Here,using a high-resolution map of forest loss and the synergy of radar and lidar to estimate the aboveground biomass density of forests,we found that deforestation in the 2000s in Latin America,one of the severely deforested regions,mainly occurred in forests with a significantly lower carbon stock density than typical mature forests.展开更多
Land use reflects human activities on land.Urban land use is the highest level human alteration on Earth,and it is rapidly changing due to population increase and urbanization.Urban areas have widespread effects on lo...Land use reflects human activities on land.Urban land use is the highest level human alteration on Earth,and it is rapidly changing due to population increase and urbanization.Urban areas have widespread effects on local hydrology,climate,biodiversity,and food production[1,2].However,maps,that contain knowledge on the distribution,pattern and composition of various land use types in urban areas,are limited to city level.The mapping standard on data sources,methods,land use classification schemes varies from city to city,due to differences in financial input and skills of mapping personnel.To address various national and global environmental challenges caused by urbanization,it is important to have urban land uses at the national and global scales that are derived from the same or consistent data sources with the same or compatible classification systems and mapping methods.This is because,only with urban land use maps produced with similar criteria,consistent environmental policies can be made,and action efforts can be compared and assessed for large scale environmental administration.However,despite of the fact that a number of urban-extent maps exist at global scales[3,4],more detailed urban land use maps do not exist at the same scale.Even at big country or regional levels such as for the United States,China and European Union,consistent land use mapping efforts are rare[5,6](e.g.,https://sdi4apps.eu/open_land_use/).展开更多
The widely performed Bayesian synthesis inversion method(BSIM)utilizes prior carbon flux and atmospheric carbon dioxide observations to optimize the unknown flux.The prior flux is usually computed from ecological mode...The widely performed Bayesian synthesis inversion method(BSIM)utilizes prior carbon flux and atmospheric carbon dioxide observations to optimize the unknown flux.The prior flux is usually computed from ecological models with large biases.The BSIM is useful in solving the problem of insufficient data,but it will increase the inaccuracies in the estimates caused by the biased prior flux.In this study,we propose a dual optimization method(DOM)to introduce a set of scaling factors as new state variables to correct for the prior flux according to information on plant functional types.The DOM estimates the scaling factors and carbon flux simultaneously by minimizing the cost function.The statistical properties of the DOM,which compare favorably with the BSIM,are provided in this article.We tested the DOM through simulation experiments which represent a true ecosystem.The results,according to the root mean squared error,show that the DOM has a higher accuracy than the BSIM in flux estimates.展开更多
The Earth’s three poles,the North Pole,South Pole,and Third Pole(i.e.,the Tibetan Plateau and its surroundings),hold the largest amount of fresh water on Earth as glaciers,sea ice,and snow.They are sensitive to clima...The Earth’s three poles,the North Pole,South Pole,and Third Pole(i.e.,the Tibetan Plateau and its surroundings),hold the largest amount of fresh water on Earth as glaciers,sea ice,and snow.They are sensitive to climate change.However,the linkages between climate variations of the three poles,particularly between the South Pole and Third Pole,remain largely unknown.The temperatures at 200 hPa over the three poles are the highest in the summer and are less affected by surface conditions,which could reflect large-scale dynamic linkages.Temperatures at 200 hPa peak the three poles during their respective hemispheric summer and exhibit in-phase variations on interdecadal timescales(10–100 years).The 200 hPa temperatures over the North Pole and South Pole were significantly correlated with the Brewer-Dobson circulation(BDC),which transports stratospheric ozone poleward,heating the air at 200 hPa.Tropopause warming over the Third Pole was found to enhance the poleward BDC,particularly to the South Pole,linking the Third Pole’s climate to the other two poles.Additionally,the Interdecadal Pacific Oscillation(IPO)also exhibits links with the 200 hPa temperatures of the three poles.展开更多
基金funding from the National Natural Science Foundation of China(62375118,6231101016,and 12104211)Shenzhen Science and Technology Innovation Commission(20220815111105001)+8 种基金SUSTech(Y01236148 and Y01236248)Zhengyou Liu acknowledges funding from the National Key R&D Program of China(2022YFA1404900 and 2018YFA0305800)the National Natural Science Foundation of China(11890701)the National Natural Science Foundation of China(12304484)Basic and Applied Basic Research Foundation of Guangdong Province(2414050002552)Shenzhen Science and Technology Innovation Commission(202308073000209)Perry Ping Shum acknowledges the National Natural Science Foundation of China(62220106006)Shenzhen Science and Technology Program(SGDX20211123114001001)Kexin Xiang acknowledges the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(pdjh2023c21002).
文摘The Bloch band theory and Brillouin zone(BZ)that characterize wave-like behaviors in periodic mediums are two cornerstones of contemporary physics,ranging from condensed matter to topological physics.Recent theoretical breakthrough revealed that,under the projective symmetry algebra enforced by artificial gauge fields,the usual two-dimensional(2D)BZ(orientable Brillouin two-torus)can be fundamentally modified to a non-orientable Brillouin Klein bottle with radically distinct manifold topology.However,the physical consequence of artificial gauge fields on the more general three-dimensional(3D)BZ(orientable Brillouin three-torus)was so far missing.Here,we theoretically discovered and experimentally observed that the fundamental domain and topology of the usual 3D BZ can be reduced to a non-orientable Brillouin Klein space or an orientable Brillouin half-turn space in a 3D acoustic crystal with artificial gauge fields.We experimentally identify peculiar 3D momentum-space non-symmorphic screw rotation and glide reflection symmetries in the measured band structures.Moreover,we experimentally demonstrate a novel stacked weak Klein bottle insulator featuring a nonzero Z2 topological invariant and self-collimated topological surface states at two opposite surfaces related by a nonlocal twist,radically distinct from all previous 3D topological insulators.Our discovery not only fundamentally modifies the fundamental domain and topology of 3D BZ,but also opens the door towards a wealth of previously overlooked momentum-space multidimensional manifold topologies and novel gaugesymmetry-enriched topological physics and robust acoustic wave manipulations beyond the existing paradigms.
基金National Natural Science Foundation of China(42022009)National Key Research and Development Program of China(2017YFA0603002)+2 种基金National Natural Science Foundation of China(41471311)as well as by partial support from the National Key Research and Development Program of China(2020YFE0200800)National Natural Science Foundation of China(42090013).
文摘The role of tropical forests in the global carbon budget remains controversial,as carbon emissions from deforestation are highly uncertain.This high uncertainty arises from the use of either fixed forest carbon stock density or maps generated from satellite-based optical reflectance with limited sensitivity to biomass to generate accurate estimates of emissions from deforestation.New space missions aiming to accurately map the carbon stock density rely on direct measurements of the spatial structures of forests using lidar and radar.We found that lost forests are special cases,and their spatial structures can be directly measured by combining archived data acquired before and after deforestation by space missions principally aimed at measuring topography.Thus,using biomass mapping,we obtained new estimates of carbon loss from deforestation ahead of forthcoming space missions.Here,using a high-resolution map of forest loss and the synergy of radar and lidar to estimate the aboveground biomass density of forests,we found that deforestation in the 2000s in Latin America,one of the severely deforested regions,mainly occurred in forests with a significantly lower carbon stock density than typical mature forests.
基金partially supported by the National Key Research and Development Program of China(2016YFA0600104)supported by donations made by Delos Living LLC,and the Cyrus Tang Foundation+2 种基金supported by the National Natural Science Foundation of China(41471419)Beijing Institute of Urban Planningsupported by the Fundamental Research Funds for the Central Universities(CCNU19TD002).
文摘Land use reflects human activities on land.Urban land use is the highest level human alteration on Earth,and it is rapidly changing due to population increase and urbanization.Urban areas have widespread effects on local hydrology,climate,biodiversity,and food production[1,2].However,maps,that contain knowledge on the distribution,pattern and composition of various land use types in urban areas,are limited to city level.The mapping standard on data sources,methods,land use classification schemes varies from city to city,due to differences in financial input and skills of mapping personnel.To address various national and global environmental challenges caused by urbanization,it is important to have urban land uses at the national and global scales that are derived from the same or consistent data sources with the same or compatible classification systems and mapping methods.This is because,only with urban land use maps produced with similar criteria,consistent environmental policies can be made,and action efforts can be compared and assessed for large scale environmental administration.However,despite of the fact that a number of urban-extent maps exist at global scales[3,4],more detailed urban land use maps do not exist at the same scale.Even at big country or regional levels such as for the United States,China and European Union,consistent land use mapping efforts are rare[5,6](e.g.,https://sdi4apps.eu/open_land_use/).
基金supported by the Key Global Change Program of the Chinese Ministry of Science and Technology(2010 CB950703)
文摘The widely performed Bayesian synthesis inversion method(BSIM)utilizes prior carbon flux and atmospheric carbon dioxide observations to optimize the unknown flux.The prior flux is usually computed from ecological models with large biases.The BSIM is useful in solving the problem of insufficient data,but it will increase the inaccuracies in the estimates caused by the biased prior flux.In this study,we propose a dual optimization method(DOM)to introduce a set of scaling factors as new state variables to correct for the prior flux according to information on plant functional types.The DOM estimates the scaling factors and carbon flux simultaneously by minimizing the cost function.The statistical properties of the DOM,which compare favorably with the BSIM,are provided in this article.We tested the DOM through simulation experiments which represent a true ecosystem.The results,according to the root mean squared error,show that the DOM has a higher accuracy than the BSIM in flux estimates.
基金supported by the National Natural Science Foundation of China(Grant Nos.41822101,41888101,41971022&41772180)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant Nos.XDB26020000 and XDA20060401)+2 种基金the State Administration of Foreign Experts Affairs of China(Grant No.GS20190157002)fellowship for the National Youth Talent Support Program of China(Ten Thousand People Plan)Youth Talent Program of Fujian Province,and the Innovation Team Project(Grant No.IRTL1705)。
文摘The Earth’s three poles,the North Pole,South Pole,and Third Pole(i.e.,the Tibetan Plateau and its surroundings),hold the largest amount of fresh water on Earth as glaciers,sea ice,and snow.They are sensitive to climate change.However,the linkages between climate variations of the three poles,particularly between the South Pole and Third Pole,remain largely unknown.The temperatures at 200 hPa over the three poles are the highest in the summer and are less affected by surface conditions,which could reflect large-scale dynamic linkages.Temperatures at 200 hPa peak the three poles during their respective hemispheric summer and exhibit in-phase variations on interdecadal timescales(10–100 years).The 200 hPa temperatures over the North Pole and South Pole were significantly correlated with the Brewer-Dobson circulation(BDC),which transports stratospheric ozone poleward,heating the air at 200 hPa.Tropopause warming over the Third Pole was found to enhance the poleward BDC,particularly to the South Pole,linking the Third Pole’s climate to the other two poles.Additionally,the Interdecadal Pacific Oscillation(IPO)also exhibits links with the 200 hPa temperatures of the three poles.