Stand age is an important indicator of tree growth and life cycle,and has implications for ecological and biological processes.This study examined changes in soil microbial biomass(SMB)as well as enzyme activities of ...Stand age is an important indicator of tree growth and life cycle,and has implications for ecological and biological processes.This study examined changes in soil microbial biomass(SMB)as well as enzyme activities of different aged plantations and revealed their relationship to soil properties.SMB,microbial biomass carbon(MBC),microbial biomass nitrogen(MBN),microbial biomass phos-phorous(MBP)and enzyme activities(β-1,4-glucosidase(β-G),β-1,4-xylosidase(β-X),cellobiohydrolase(CBH),leucine aminopeptidase(LAP),β-1,4-n-acetylglucosamine(NAG)and acid phosphatase(ACP))were measured in Oro-mosia hosiei plantations of different ages.The soil qual-ity index(SQI)model assessed soil quality.SMB contents significantly decreased in young(7-year-old)and mature plantations(45-year-old)compared to middle-aged(20-year-old)plantations.Activity of soilβ-G,β-X,CBH and NAG in the 20-year-old plantations was markedly higher than in the other plantations except forβ-G,CBH and NAG in the 45-year-old plantations.Soil organic carbon(SOC),total potassium(TK),total porosity,dissolved organic carbon,nitrate nitrogen(NO_(3)--N)and non-capillary porosity were key factors affecting SMB,while soil bulk density,pH,SOC,NO_(3)--N,TK and forest litter(FL)were the main factors affecting soil enzyme activities.SQI decreased in the order:middle-aged>mature>young.The efficiency of soil organic matter conversion,the effect of nitrogen min-eralization and fixation by microorganisms,and the better efficiency of phosphorus utilization in mid-age plantations,which improves soil physical properties,better facilitates tree growth,and further improves the buffering of the soil against acidity and alkalinity.FL quality was the only soil biological factor affecting soil enzyme activity.Our findings demonstrate that different aged plantations affect soil micro-bial biomass,enzyme activity,and soil quality.展开更多
Uranyl-organic hybrids,which are assembled from uranyl cations or polynuclear clusters and organic ligands,have gathered tremendous attention driven by their vast array of synthetically accessible structures for custo...Uranyl-organic hybrids,which are assembled from uranyl cations or polynuclear clusters and organic ligands,have gathered tremendous attention driven by their vast array of synthetically accessible structures for customizing their functionality[1].A plethora of uranyl-organic hybrids with their dimensions ranging from OD clusters,1D chains,2D layers and 3D frameworks have been documented in diverse fields including storage,separation,catalysis and sensing[2].展开更多
基金supported with the financial support of the National Natural Science Foundation of China(32001311)the Fundamental Research Funds for the Central Universities(2452021017).
文摘Stand age is an important indicator of tree growth and life cycle,and has implications for ecological and biological processes.This study examined changes in soil microbial biomass(SMB)as well as enzyme activities of different aged plantations and revealed their relationship to soil properties.SMB,microbial biomass carbon(MBC),microbial biomass nitrogen(MBN),microbial biomass phos-phorous(MBP)and enzyme activities(β-1,4-glucosidase(β-G),β-1,4-xylosidase(β-X),cellobiohydrolase(CBH),leucine aminopeptidase(LAP),β-1,4-n-acetylglucosamine(NAG)and acid phosphatase(ACP))were measured in Oro-mosia hosiei plantations of different ages.The soil qual-ity index(SQI)model assessed soil quality.SMB contents significantly decreased in young(7-year-old)and mature plantations(45-year-old)compared to middle-aged(20-year-old)plantations.Activity of soilβ-G,β-X,CBH and NAG in the 20-year-old plantations was markedly higher than in the other plantations except forβ-G,CBH and NAG in the 45-year-old plantations.Soil organic carbon(SOC),total potassium(TK),total porosity,dissolved organic carbon,nitrate nitrogen(NO_(3)--N)and non-capillary porosity were key factors affecting SMB,while soil bulk density,pH,SOC,NO_(3)--N,TK and forest litter(FL)were the main factors affecting soil enzyme activities.SQI decreased in the order:middle-aged>mature>young.The efficiency of soil organic matter conversion,the effect of nitrogen min-eralization and fixation by microorganisms,and the better efficiency of phosphorus utilization in mid-age plantations,which improves soil physical properties,better facilitates tree growth,and further improves the buffering of the soil against acidity and alkalinity.FL quality was the only soil biological factor affecting soil enzyme activity.Our findings demonstrate that different aged plantations affect soil micro-bial biomass,enzyme activity,and soil quality.
基金supported by the National Natural Science Foundation of China(22322609,U22B20139,22206196,and 22076196)the Shanghai Sailing Program(21YF1456200).
文摘Uranyl-organic hybrids,which are assembled from uranyl cations or polynuclear clusters and organic ligands,have gathered tremendous attention driven by their vast array of synthetically accessible structures for customizing their functionality[1].A plethora of uranyl-organic hybrids with their dimensions ranging from OD clusters,1D chains,2D layers and 3D frameworks have been documented in diverse fields including storage,separation,catalysis and sensing[2].