Although human-induced pluripotent stem cell-derived cardiomyocytes(hi PSC-CMs) have been used for disease modeling and drug discovery, clinically relevant three-dimensional(3D) functional myocardial microtissues are ...Although human-induced pluripotent stem cell-derived cardiomyocytes(hi PSC-CMs) have been used for disease modeling and drug discovery, clinically relevant three-dimensional(3D) functional myocardial microtissues are lacking. Here, we developed a novel ring-shaped cardiac microtissue comprised of chamber-specific tissues to achieve a geometrically non-orientable ventricular myocardial band, similar to a M?bius loop. The ring-shaped cardiac tissue was constructed of hi PSC-CMs and human cardiac fibroblasts(h CFs) through a facile cellular self-assembly approach. It exhibited basic anatomical structure,positive cardiac troponin T(c Tn T) immunostaining, regular calcium transients, and cardiac-like mechanical strength. The cardiac rings can be self-assembled and scaled up into various sizes with outstanding stability, suggesting their potential for precise therapy, pathophysiological investigation, and large-scale drug screening.展开更多
基金supported by the Scientific and Technology Platform and Talents Project of Changsha (No.kh1801129) (to HW)Hunan Cancer Hospital Climb Plan (No.YF2020007) (to HW)+1 种基金the Huadong Medicine Joint Funds of the Zhejiang Provincial Natural Science Foundation of China (No.LHDMZ22H020001) (To XY)the Science and Technology Program of Jinhua Science and Technology Bureau (No.2021-3-001) (To XY)。
文摘Although human-induced pluripotent stem cell-derived cardiomyocytes(hi PSC-CMs) have been used for disease modeling and drug discovery, clinically relevant three-dimensional(3D) functional myocardial microtissues are lacking. Here, we developed a novel ring-shaped cardiac microtissue comprised of chamber-specific tissues to achieve a geometrically non-orientable ventricular myocardial band, similar to a M?bius loop. The ring-shaped cardiac tissue was constructed of hi PSC-CMs and human cardiac fibroblasts(h CFs) through a facile cellular self-assembly approach. It exhibited basic anatomical structure,positive cardiac troponin T(c Tn T) immunostaining, regular calcium transients, and cardiac-like mechanical strength. The cardiac rings can be self-assembled and scaled up into various sizes with outstanding stability, suggesting their potential for precise therapy, pathophysiological investigation, and large-scale drug screening.