期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
ROS-sensitive PD-L1 siRNA cationic selenide nanogels for self-inhibition of autophagy and prevention of immune escape
1
作者 Jie Gao Yonghua Zhai +12 位作者 Weihong Lu Xianghe Jiang jingsheng zhou Lili Wu Longhai Du Chunqing Ou Xinyi Zhang Hanliang He Jian Zhu Zhengbiao Zhang Meiyun Li Yan Wu Xiangqiang Pan 《Bioactive Materials》 SCIE CSCD 2024年第11期597-610,共14页
In the field of cancer therapy,inhibiting autophagy has emerged as a promising strategy.However,pharmacological disruption of autophagy can lead to the upregulation of programmed death-ligand 1(PD-L1),enabling tumor i... In the field of cancer therapy,inhibiting autophagy has emerged as a promising strategy.However,pharmacological disruption of autophagy can lead to the upregulation of programmed death-ligand 1(PD-L1),enabling tumor immune evasion.To address this issue,we developed innovative ROS-responsive cationic poly(ethylene imine)(PEI)nanogels using selenol chemistry-mediated multicomponent reaction(MCR)technology.This procedure involved simple mixing of low-molecular-weight PEI(LMW PEI),γ-selenobutylacetone(γ-SBL),and poly(ethylene glycol)methacrylate(PEGMA).Through high-throughput screening,we constructed a library of AxSeyOz nanogels and identified the optimized A1.8Se3O0.5/siPD-L1 nanogels,which exhibited a size of approximately 200 nm,excellent colloidal stability,and the most effective PD-L1 silencing efficacy.These nanogels demonstrated enhanced uptake by tumor cells,excellent oxidative degradation ability,and inhibited autophagy by alkalinizing lysosomes.The A1.8Se3O0.5/siPD-L1 nanogels significantly downregulated PD-L1 expression and increased the expression of major histocompatibility complex class I(MHC-I),resulting in robust proliferation of specific CD8+T cells and a decrease in MC38 tumor growth.As a result,the A1.8Se3O0.5/siPD-L1 nanogels inhibited tumor growth through self-inhibition of autophagy,upregulation of MHC-I,and downregulation of PD-L1.Designed with dynamic diselenide bonds,the A1.8Se3O0.5/siPD-L1 nanogels showed synergistic antitumor efficacy through self-inhibition of autophagy and prevention of immune escape. 展开更多
关键词 Multicomponent reaction ROS sensitive Cationic nanogel Autophagy inhibition Immune escape
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部