This paper establishes a lattice Boltzmann method (LBM) with two amending functions for solving partial differential equations (PDEs) arising in Asian and lookback options pricing. The time evolution of stock pric...This paper establishes a lattice Boltzmann method (LBM) with two amending functions for solving partial differential equations (PDEs) arising in Asian and lookback options pricing. The time evolution of stock prices can be regarded as the movement of randomizing particles in different directions, and the discrete scheme of LBM can be interpreted as the binomial models. With the Chapman-Enskog multi-scale expansion, the PDEs are recovered correctly from the continuous Boltzmann equation and the computational complexity is O(N), where N is the number of space nodes. Compared to the traditional LBM, the coefficients of equilibrium distribution and amending functions are taken as polynomials instead of constants. The stability of LBM is studied via numerical examples and numerical comparisons show that the LBM is as accurate as the existing numerical methods for pricing the exotic options and takes much less CPU time.展开更多
This paper studies a problem of optimal investment and consumption with early retirement option under constant elasticity variation(CEV)model with finite horizon.Two risky assets are involved in the model with one fol...This paper studies a problem of optimal investment and consumption with early retirement option under constant elasticity variation(CEV)model with finite horizon.Two risky assets are involved in the model with one following geometric Brownian motion and the other a CEV model.This problem is a kind of two dimensional mixed control and optimal stopping problems with finite horizon.The existence and continuity of the optimal retirement threshold surfaces are proved and the working and retirement regions are characterized theoretically.Least-squares Monte-Carlo methods are developed to solve this mixed control and optimal stopping problem.The algorithms are well implemented and the optimal retirement threshold surfaces,optimal investment strategies and the optimal consumptions are drawn via examples.展开更多
In this paper,a rough Heston model with variable volatility of volatility(vol-of-vol)is derived by modifying the generalized nonlinear Hawkes process and extending the scaling techniques.Then the nonlinear fractional ...In this paper,a rough Heston model with variable volatility of volatility(vol-of-vol)is derived by modifying the generalized nonlinear Hawkes process and extending the scaling techniques.Then the nonlinear fractional Ric-cati equation for the characteristic function of the asset log-price is derived.The existence,uniqueness and regularity of the solution to the nonlinear fractional Riccati equation are proved and the equation is solved by the Adams methods.Finally the Fourier-cosine methods are combined with the Adams methods to price the options.展开更多
This paper develops and analyzes a moving mesh finite difference method for solving partial integro-differential equations. First, the time-dependent mapping of the coordinate transformation is approximated by a a pie...This paper develops and analyzes a moving mesh finite difference method for solving partial integro-differential equations. First, the time-dependent mapping of the coordinate transformation is approximated by a a piecewise linear function in time. Then, piecewise quadratic polynomial in space and an efficient method to discretize the memory term of the equation is designed using the moving mesh approach. In each time slice, a simple piecewise constant approximation of the integrand is used, and thus a quadrature is constructed for the memory term. The central finite difference scheme for space and the backward Euler scheme for time are used. The paper proves that the accumulation of the quadrature error is uniformly bounded and that the convergence of the method is second order in space and first order in time. Numerical experiments are carried out to confirm the theoretical predictions.展开更多
This paper studies the convergence rates of a moving mesh implicit finite difference method with interpolation for partial differential equations (PDEs) with moving boundary arising in Asian option pricing. The movi...This paper studies the convergence rates of a moving mesh implicit finite difference method with interpolation for partial differential equations (PDEs) with moving boundary arising in Asian option pricing. The moving mesh scheme is based on Rnnacher timestepping approach whose idea is running the implicit Euler schemes in the initial few steps and continuing with Crank-Nicolson schemes. With graded meshes for time direction and moving meshes for space direction, the fully discretized scheme is constructed using quadratic interpolation between two consecutive time level for the PDEs with moving boundary. The second-order convergence rates in both time and space are proved and numerical examples are carried out to confirm the theoretical results.展开更多
This paper develops a fast Laplace transform method for solving the complex PDE system arising from Parisian and Parasian option pricing.The value functions of the options are governed by a system of partial different...This paper develops a fast Laplace transform method for solving the complex PDE system arising from Parisian and Parasian option pricing.The value functions of the options are governed by a system of partial differential equations(PDEs)of two and three dimensions.Applying the Laplace transform to the PDEs with respect to the calendar time to maturity leads to a coupled system consisting of an ordinary differential equation(ODE)and a 2-dimensional partial differential equation(2d-PDE).The solution to this ODE is found analytically on a specific parabola contour that is used in the fast Laplace inversion,whereas the solution to the 2d-PDE is approximated by solving 1-dimensional integro-differential equations.The Laplace inversion is realized by the fast contour integral methods.Numerical results confirm that the Laplace transform methods have the exponential convergence rates and are more efficient than the implicit finite difference methods,Monte Carlo methods and moving window methods.展开更多
For two-dimensional boundary integral equations of the first kind with logarithmic kernels, the use of the conventional boundary element methods gives linear systems with dense matrix. In a recent work [J. Comput. Mat...For two-dimensional boundary integral equations of the first kind with logarithmic kernels, the use of the conventional boundary element methods gives linear systems with dense matrix. In a recent work [J. Comput. Math., 22 (2004), pp. 287-298], it is demonstrated that the dense matrix can be replaced by a sparse one if appropriate graded meshes are used in the quadrature rules. The numerical experiments also indicate that the proposed numerical methods require less computational time than the conventional ones while the formal rate of convergence can be preserved. The purpose of this work is to establish a stability and convergence theory for this fast numerical method. The stability analysis depends on a decomposition of the coefficient matrix for the collocation equation. The formal orders of convergence observed in the numerical experiments are proved rigorously.展开更多
This paper studies a system of semi-linear fractional diffusion equations which arise in competitive predator-preymodels by replacing the second-order derivatives in the spatial variables with fractional derivatives o...This paper studies a system of semi-linear fractional diffusion equations which arise in competitive predator-preymodels by replacing the second-order derivatives in the spatial variables with fractional derivatives of order less than two.Moving finite element methods are proposed to solve the system of fractional diffusion equations and the convergence rates of the methods are proved.Numerical examples are carried out to confirm the theoretical findings.Some applications in anomalous diffusive Lotka-Volterra and Michaelis-Menten-Holling predator-preymodels are studied.展开更多
基金The authors were grateful to the anonymous referees for their valuable suggestions that led to a greatly improved paper. This work was supported by the National Natural Science Foundation of China (Grant No. 11171274) and the Program for New Century Excellent Talents in University (Grant No. NCET-12-0922).
文摘This paper establishes a lattice Boltzmann method (LBM) with two amending functions for solving partial differential equations (PDEs) arising in Asian and lookback options pricing. The time evolution of stock prices can be regarded as the movement of randomizing particles in different directions, and the discrete scheme of LBM can be interpreted as the binomial models. With the Chapman-Enskog multi-scale expansion, the PDEs are recovered correctly from the continuous Boltzmann equation and the computational complexity is O(N), where N is the number of space nodes. Compared to the traditional LBM, the coefficients of equilibrium distribution and amending functions are taken as polynomials instead of constants. The stability of LBM is studied via numerical examples and numerical comparisons show that the LBM is as accurate as the existing numerical methods for pricing the exotic options and takes much less CPU time.
基金supported by the National Natural Science Foundation of China(Grant No.12071373)by the Fundamental Research Funds for the Central Universities of China(Grant No.JBK1805001)+1 种基金The work of J.Xing was supported by the National Natural Science Foundation of China(Grant No.12101151)by the Guizhou Key Laboratory of Big Data Statistical Analysis(Grant No.[2019]5103).
文摘This paper studies a problem of optimal investment and consumption with early retirement option under constant elasticity variation(CEV)model with finite horizon.Two risky assets are involved in the model with one following geometric Brownian motion and the other a CEV model.This problem is a kind of two dimensional mixed control and optimal stopping problems with finite horizon.The existence and continuity of the optimal retirement threshold surfaces are proved and the working and retirement regions are characterized theoretically.Least-squares Monte-Carlo methods are developed to solve this mixed control and optimal stopping problem.The algorithms are well implemented and the optimal retirement threshold surfaces,optimal investment strategies and the optimal consumptions are drawn via examples.
基金supported by National Natural Science Foundation of China (No. 12171 122)Shenzhen Science and Technology Program (No. RCJC20210609103755110)+1 种基金Fundamental Research Project of Shenzhen (No. JCYJ20190806143201649)supported by National Natural Science Foundation of China (Grant No. 12071373).
文摘In this paper,a rough Heston model with variable volatility of volatility(vol-of-vol)is derived by modifying the generalized nonlinear Hawkes process and extending the scaling techniques.Then the nonlinear fractional Ric-cati equation for the characteristic function of the asset log-price is derived.The existence,uniqueness and regularity of the solution to the nonlinear fractional Riccati equation are proved and the equation is solved by the Adams methods.Finally the Fourier-cosine methods are combined with the Adams methods to price the options.
基金partly supported by SRF for ROCS, SEMsupported by a grant from the "project 211 (phase Ⅲ)" of the Southwestern University of Finance and Economics
文摘This paper develops and analyzes a moving mesh finite difference method for solving partial integro-differential equations. First, the time-dependent mapping of the coordinate transformation is approximated by a a piecewise linear function in time. Then, piecewise quadratic polynomial in space and an efficient method to discretize the memory term of the equation is designed using the moving mesh approach. In each time slice, a simple piecewise constant approximation of the integrand is used, and thus a quadrature is constructed for the memory term. The central finite difference scheme for space and the backward Euler scheme for time are used. The paper proves that the accumulation of the quadrature error is uniformly bounded and that the convergence of the method is second order in space and first order in time. Numerical experiments are carried out to confirm the theoretical predictions.
文摘This paper studies the convergence rates of a moving mesh implicit finite difference method with interpolation for partial differential equations (PDEs) with moving boundary arising in Asian option pricing. The moving mesh scheme is based on Rnnacher timestepping approach whose idea is running the implicit Euler schemes in the initial few steps and continuing with Crank-Nicolson schemes. With graded meshes for time direction and moving meshes for space direction, the fully discretized scheme is constructed using quadratic interpolation between two consecutive time level for the PDEs with moving boundary. The second-order convergence rates in both time and space are proved and numerical examples are carried out to confirm the theoretical results.
基金supported by National Natural Science Foundation of China(Grant No.11671323)Program for New Century Excellent Talents in University of China(Grant No.NCET-12-0922)+1 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.JBK1805001)Hunan Province Science Foundation of China(Grant No.2020JJ4562)。
文摘This paper develops a fast Laplace transform method for solving the complex PDE system arising from Parisian and Parasian option pricing.The value functions of the options are governed by a system of partial differential equations(PDEs)of two and three dimensions.Applying the Laplace transform to the PDEs with respect to the calendar time to maturity leads to a coupled system consisting of an ordinary differential equation(ODE)and a 2-dimensional partial differential equation(2d-PDE).The solution to this ODE is found analytically on a specific parabola contour that is used in the fast Laplace inversion,whereas the solution to the 2d-PDE is approximated by solving 1-dimensional integro-differential equations.The Laplace inversion is realized by the fast contour integral methods.Numerical results confirm that the Laplace transform methods have the exponential convergence rates and are more efficient than the implicit finite difference methods,Monte Carlo methods and moving window methods.
基金supported by an CERG grant of Hong Kong Research Grant Council and by FRG grants of Hong Kong Baptist University
文摘For two-dimensional boundary integral equations of the first kind with logarithmic kernels, the use of the conventional boundary element methods gives linear systems with dense matrix. In a recent work [J. Comput. Math., 22 (2004), pp. 287-298], it is demonstrated that the dense matrix can be replaced by a sparse one if appropriate graded meshes are used in the quadrature rules. The numerical experiments also indicate that the proposed numerical methods require less computational time than the conventional ones while the formal rate of convergence can be preserved. The purpose of this work is to establish a stability and convergence theory for this fast numerical method. The stability analysis depends on a decomposition of the coefficient matrix for the collocation equation. The formal orders of convergence observed in the numerical experiments are proved rigorously.
基金supported by National Natural Science Foundation of China(Grant No.11171274).
文摘This paper studies a system of semi-linear fractional diffusion equations which arise in competitive predator-preymodels by replacing the second-order derivatives in the spatial variables with fractional derivatives of order less than two.Moving finite element methods are proposed to solve the system of fractional diffusion equations and the convergence rates of the methods are proved.Numerical examples are carried out to confirm the theoretical findings.Some applications in anomalous diffusive Lotka-Volterra and Michaelis-Menten-Holling predator-preymodels are studied.