期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A global mantle conductivity model derived from 8 years of Swarm satellite magnetic data 被引量:1
1
作者 HongBo Yao ZhengYong Ren +2 位作者 KeJia Pan jingtian tang KeKe Zhang 《Earth and Planetary Physics》 EI CSCD 2023年第1期49-56,共8页
Mantle conductivity imaging is one of the scientific goals of the forthcoming Macao Science Satellite-1(MSS-1).To achieve this goal,we develop a data analysis and inversion scheme for satellite magnetic data to probe ... Mantle conductivity imaging is one of the scientific goals of the forthcoming Macao Science Satellite-1(MSS-1).To achieve this goal,we develop a data analysis and inversion scheme for satellite magnetic data to probe global one-dimensional(1D)mantle conductivity structures.Using this scheme,we present a new global mantle conductivity model by analyzing over 8 years of Swarm satellite magnetic data.First,after sophisticated data selection procedures and the removal of core and crustal fields,the inducing and induced spherical harmonic coefficients of magnetic potential due to the magnetospheric ring current are derived.Second,satellite Cresponses are estimated from the time series of these coefficients.Finally,the observed responses are inverted for both smooth and threejump conductivity models using a quasi-Newton algorithm.The obtained conductivity models are in general agreement with previous global mantle conductivity models.A comparison of our conductivity model with the laboratory conductivity model suggests the mean state of the upper mantle and transition zone is relatively dry.This scheme can be used to process the forthcoming Macao Science Satellite-1 magnetic data. 展开更多
关键词 Macao Science Satellite-1 satellite magnetic data mantle conductivity global electromagnetic induction
下载PDF
Application of integrated geophysical interpretation on accumulation body
2
作者 Caikun GAO Huakun DU +3 位作者 jingtian tang Kangxiu WU Chang'an XIAO Shiping WANG 《Global Geology》 2008年第3期191-196,共6页
Integrated geophysical interpretation is a method of combinating different geophysics prospecting methods based on different physical properties of accumulation. As different geophysical methods own different interpre... Integrated geophysical interpretation is a method of combinating different geophysics prospecting methods based on different physical properties of accumulation. As different geophysical methods own different interpretations and varying detection accuracies, the key issue becomes how to integrate the results of several geophysical methods to corrently carry out a comprehensive explanation. Based on different geophysical results, the authors proposed an integrated geophysical explanation method and successfully applied it in practical engineering problems. 展开更多
关键词 水力工程 地理物理学 重量 可靠性
下载PDF
High-precision modeling of tide-induced 3-D magnetic field and analysis of geomagnetic satellite orbit requirements
3
作者 Zhengyong REN Cong YANG +3 位作者 Hongbo YAO Xu tang jingtian tang Keke ZHANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第1期165-178,共14页
Ground-based magnetic observatories and geomagnetic satellites can observe the induced magnetic field generated by the motion of seawater containing sodium and chlorine ions.Calculating the three-dimensional(3-D)spati... Ground-based magnetic observatories and geomagnetic satellites can observe the induced magnetic field generated by the motion of seawater containing sodium and chlorine ions.Calculating the three-dimensional(3-D)spatial distribution of tide-induced magnetic fields(TIMF)is crucial for inverting the electrical conductivity structure of the oceanic lithosphere.It also serves as an essential basis for designing optimal geomagnetic observatories and satellite orbits.However,existing methods for simulating TIMF suffer from limitations in inaccurately modeling realistic coastlines,heterogeneous land and sea surface properties,and complex deep Earth structures,thereby the interpretational level of TIMF data is reduced.To overcome this issue,we developed a tetrahedral-based finite element method for simulating TIMF,which can efficiently approximate realistic coastlines,heterogeneous land and sea surface properties,and complex deep Earth structures.Firstly,we derived the boundary value problem for the seawater motion-induced electromagnetic field,which was solved using the vector finite element method based on tetrahedral elements.Secondly,using the latest ocean depth and seafloor sediment layer models,we constructed a 3-D conductivity model of the Earth,which includes realistic coastlines,heterogeneous land and sea conductivity distributions.We then computed the TIMF using the M_(2)tidal source as an example and validated our method by comparing it with results obtained from spherical harmonic finite element and integral equation methods.Finally,utilizing the computed high-precision M_(2),N_(2),and O1 TIMF signals,we marked global observatories capable of observing strong M_(2),N_(2),and O1 TIMF signals and predicted alternative stations suitable for tide signal observations.Additionally,we calculated TIMF at heights of 450 and 200 km for the Macao Science Satellite 1 and its subsequent satellites.The results indicate that the amplitude of the tidal-induced magnetic field at 200 km is approximately twice that at 450 km.The maximum amplitudes of M_(2),N_(2),and O1 TIMF at 200 km are eight,two,and three times the measurement accuracy of the magnetic sensing payload(0.5 nT),respectively.The 200 km orbit has great potential for detecting high-resolution electrical structures of the seafloor lithosphere and asthenosphere in regions such as New Zealand,southern Iceland,the southern Indian Ocean,the Ross Sea region of Antarctica,and the Sea of Okhotsk.It also holds the potential for studying large-scale oceanic dynamic processes and properties. 展开更多
关键词 Ocean motional induction Electromagnetic induction Ocean tides Geomagnetic satellite Macao Science Satellite 1
原文传递
3D finite-element modeling of Earth induced electromagnetic field and its potential applications for geomagnetic satellites 被引量:2
4
作者 Hongbo YAO Zhengyong REN +5 位作者 jingtian tang Yufeng LIN Changchun YIN Xiangyun HU Qinghua HUANG Keke ZHANG 《Science China Earth Sciences》 SCIE EI CSCD 2021年第10期1798-1812,共15页
The accumulated large amount of satellite magnetic data strengthens our capability of resolving the electrical conductivity of Earth’s mantle.To invert these satellite magnetic data,accurate and efficient forward mod... The accumulated large amount of satellite magnetic data strengthens our capability of resolving the electrical conductivity of Earth’s mantle.To invert these satellite magnetic data,accurate and efficient forward modeling solvers are needed.In this study,a new finite-element based forward modeling solver is developed to accurately and efficiently compute the induced electromagnetic field for a realistic 3D Earth.Firstly,the nodal-based finite element method with linear shape function on tetrahedral grid is used to assemble the final system of linear equations for the magnetic vector potential and electric scalar potential.The FGMRES solver with algebraic multigrid(AMG)preconditioner is used to quickly solve the final system of linear equations.The weighted moving least-square method is employed to accurately recover the electromagnetic field from the numerical solutions of magnetic vector and electric scalar potentials.Furthermore,a local mesh refinement technique is employed to improve the accuracy of the estimated electromagnetic field.At the end,two synthetic models are used to verify the accuracy and efficiency of our newly developed forward modeling solver.A realistic 3D Earth model is used to simulate the induced magnetic field at 450 and 200 km altitudes which are the planned flying altitudes of Macao’s geomagnetic satellites.The simulation indicates that(1)the amplitude of the mantle-induced magnetic field can reach 10–30 nT at 450 km altitude,which is 10–30%of the primary magnetic field.The induced magnetic field at 200 km altitude has larger amplitudes.These mantleinduced magnetic fields can be measured by Macao geomagnetic satellites;(2)the amplitude of the ocean-induced magnetic field can reach 5–30 nT at satellite altitudes,which needs to be carefully considered in the interpretation of satellite magnetic data.We are confident that our newly developed forward modeling solver will become a key tool for interpreting satellite magnetic data. 展开更多
关键词 Global electromagnetic induction Geomagnetic satellites Macao’s first geomagnetic satellite Finite-element method Mantle electrical conductivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部