[Objectives]To explore pathways and countermeasures for transforming farmers livelihoods in the way of reducing their dependence on land while promoting sustainable development and alleviating ecological degradation.[...[Objectives]To explore pathways and countermeasures for transforming farmers livelihoods in the way of reducing their dependence on land while promoting sustainable development and alleviating ecological degradation.[Methods]A combination of field research,literature review,and policy analysis was employed to identify key factors affecting farmers livelihoods and potential strategies for transformation.[Results]The study found that developing ecological agriculture and modern agriculture,promoting agricultural transformation and upgrading,cultivating alternative industries,strengthening ecological engineering construction,and establishing diversified ecological compensation methods and supporting policies are effective strategies for transforming farmers livelihoods.[Conclusions]Implementing these strategies can help alleviate the contradiction between ecological protection and farmers livelihood development,promoting coordinated development of both.This approach not only benefits farmers but also contributes to sustainable environmental management and biodiversity conservation.展开更多
The karst region of southern China is a fragile ecological zone with widespread rocky desertification. This paper describes the rocky desertification occurring in this region in terms of both natural and anthropogenic...The karst region of southern China is a fragile ecological zone with widespread rocky desertification. This paper describes the rocky desertification occurring in this region in terms of both natural and anthropogenic factors. During geological time periods, the region’s changing environment governed the natural rocky desertification processes, whereas during historical and modern times, anthropogenic processes have been superimposed on these natural processes. Human activities have accelerated and exacerbated rocky desertification. The period from the beginning to the middle of the Qing dynasty was an important transitional period in which human activities began to exert a particularly strong influence on rocky desertification. Since then, the effect of anthropogenic factors has increasingly exceeded the effect of natural factors. The rocky desertification process in southern China’s karst region combines surface ecological processes (including vegetation degradation and loss, soil erosion, surface water loss, and bedrock solution) with a reduction of the land’s biological productivity, leading to degradation that produces rocky desert. Controlling rocky desertification requires comprehensive development of sustainable agriculture and economic development that provides employment alternatives to agriculture and thereby promotes the rehabilitation of rocky desertified land.展开更多
The bio-inspired aerial–aquatic vehicle off ers attractive perspectives for future intelligent robotic systems.Cormorant’s webbed-feet support water-surface takeoff is a typical locomotion pattern of amphibious wate...The bio-inspired aerial–aquatic vehicle off ers attractive perspectives for future intelligent robotic systems.Cormorant’s webbed-feet support water-surface takeoff is a typical locomotion pattern of amphibious water birds,but its highly maneuverable and agile kinetic behaviors are inconvenient to measure directly and challenging to calculate convergently.This paper presents a numerical Computational Fluid Dynamic(CFD)technique to simulate and reproduce the cormorant's surface takeoff process by modeling the three-dimensional biomimetic cormorant.Quantitative numerical analysis of the fluid flows and hydrodynamic forces around a cormorant’s webbed feet,body,and wings are conducted,which are consistent with experimental results and theoretical verification.The results show that the webbed feet indeed produced a large majority of the takeoff power during the initial takeoff stage.Prior lift and greater angle of attack are generated to bring the body off the water as soon as possible.With the discussion of the mechanism of the cormorant’s water-surface takeoff and the relevant characteristics of biology,the impetus and attitude adjustment strategies of the aerial–aquatic vehicle in the takeoff process are illustrated.展开更多
基金Supported by 2024 General Project of Guangdong Provincial Philosophy and Social Science Planning(GD24CGL18).
文摘[Objectives]To explore pathways and countermeasures for transforming farmers livelihoods in the way of reducing their dependence on land while promoting sustainable development and alleviating ecological degradation.[Methods]A combination of field research,literature review,and policy analysis was employed to identify key factors affecting farmers livelihoods and potential strategies for transformation.[Results]The study found that developing ecological agriculture and modern agriculture,promoting agricultural transformation and upgrading,cultivating alternative industries,strengthening ecological engineering construction,and establishing diversified ecological compensation methods and supporting policies are effective strategies for transforming farmers livelihoods.[Conclusions]Implementing these strategies can help alleviate the contradiction between ecological protection and farmers livelihood development,promoting coordinated development of both.This approach not only benefits farmers but also contributes to sustainable environmental management and biodiversity conservation.
基金supported by the National Natural Science Foundation of China (Grant No: 30870469, 30471421)
文摘The karst region of southern China is a fragile ecological zone with widespread rocky desertification. This paper describes the rocky desertification occurring in this region in terms of both natural and anthropogenic factors. During geological time periods, the region’s changing environment governed the natural rocky desertification processes, whereas during historical and modern times, anthropogenic processes have been superimposed on these natural processes. Human activities have accelerated and exacerbated rocky desertification. The period from the beginning to the middle of the Qing dynasty was an important transitional period in which human activities began to exert a particularly strong influence on rocky desertification. Since then, the effect of anthropogenic factors has increasingly exceeded the effect of natural factors. The rocky desertification process in southern China’s karst region combines surface ecological processes (including vegetation degradation and loss, soil erosion, surface water loss, and bedrock solution) with a reduction of the land’s biological productivity, leading to degradation that produces rocky desert. Controlling rocky desertification requires comprehensive development of sustainable agriculture and economic development that provides employment alternatives to agriculture and thereby promotes the rehabilitation of rocky desertified land.
基金supported by National Natural Science Foundation of China(51475028,61703023).
文摘The bio-inspired aerial–aquatic vehicle off ers attractive perspectives for future intelligent robotic systems.Cormorant’s webbed-feet support water-surface takeoff is a typical locomotion pattern of amphibious water birds,but its highly maneuverable and agile kinetic behaviors are inconvenient to measure directly and challenging to calculate convergently.This paper presents a numerical Computational Fluid Dynamic(CFD)technique to simulate and reproduce the cormorant's surface takeoff process by modeling the three-dimensional biomimetic cormorant.Quantitative numerical analysis of the fluid flows and hydrodynamic forces around a cormorant’s webbed feet,body,and wings are conducted,which are consistent with experimental results and theoretical verification.The results show that the webbed feet indeed produced a large majority of the takeoff power during the initial takeoff stage.Prior lift and greater angle of attack are generated to bring the body off the water as soon as possible.With the discussion of the mechanism of the cormorant’s water-surface takeoff and the relevant characteristics of biology,the impetus and attitude adjustment strategies of the aerial–aquatic vehicle in the takeoff process are illustrated.