The thermodynamic properties of boron nitride under extreme pressures and temperatures are of great interest and importance for materials science and inertial confinement fusion physics,but they are poorly understood ...The thermodynamic properties of boron nitride under extreme pressures and temperatures are of great interest and importance for materials science and inertial confinement fusion physics,but they are poorly understood owing to the challenges of performing experiments and realizing ab initio calculations.Here,we report the first shock Hugoniot data on hexagonal boron nitride at pressures of 5–16 Mbar,using hohlraum-driven shock waves at the SGIII-p laser facility in China.Our density functional theory molecular dynamics calculations closely match experimental data,validating the equations of state for modeling the shock response of boron nitride and filling a crucial gap in the knowledge of boron nitride properties in the region of multi-Mbar pressures and eV temperatures.The results presented here provide fundamental insights into boron nitride under the extreme conditions relevant to inertial confinement fusion,hydrogen–boron fusion,and high-energy-density physics.展开更多
Despite fluctuations in embryo size within a species,the spatial gene expression pattern and hence the embryonic structure can nonetheless maintain the correct proportion to the embryo size.This is known as the scalin...Despite fluctuations in embryo size within a species,the spatial gene expression pattern and hence the embryonic structure can nonetheless maintain the correct proportion to the embryo size.This is known as the scaling phenomenon.For morphogen-induced patterning of gene expression,the positional information encoded in the local morphogen concentrations is decoded by the downstream genetic network(the decoder).In this paper,we show that the requirement of scaling sets severe constraints on the geometric structure of such a local decoder,which in turn enables deduction of mutants’behavior and extraction of regulation information without going into any molecular details.We demonstrate that the Drosophila gap gene system achieves scaling in the way consistent with our theory—the decoder geometry required by scaling correctly accounts for the observed gap gene expression pattern in nearly all maternal morphogen mutants.Furthermore,the regulation logic and the coding/decoding strategy of the gap gene system can also be revealed from the decoder geometry.Our work provides a general theoretical framework for a large class of problems where scaling output is achieved by non-scaling inputs and a local decoder,as well as a unified understanding of scaling,mutants’behavior,and gene regulation for the Drosophila gap gene system.展开更多
文摘The thermodynamic properties of boron nitride under extreme pressures and temperatures are of great interest and importance for materials science and inertial confinement fusion physics,but they are poorly understood owing to the challenges of performing experiments and realizing ab initio calculations.Here,we report the first shock Hugoniot data on hexagonal boron nitride at pressures of 5–16 Mbar,using hohlraum-driven shock waves at the SGIII-p laser facility in China.Our density functional theory molecular dynamics calculations closely match experimental data,validating the equations of state for modeling the shock response of boron nitride and filling a crucial gap in the knowledge of boron nitride properties in the region of multi-Mbar pressures and eV temperatures.The results presented here provide fundamental insights into boron nitride under the extreme conditions relevant to inertial confinement fusion,hydrogen–boron fusion,and high-energy-density physics.
基金supported by the National Natural Science Foundation of China(12090053 and 32088101)。
文摘Despite fluctuations in embryo size within a species,the spatial gene expression pattern and hence the embryonic structure can nonetheless maintain the correct proportion to the embryo size.This is known as the scaling phenomenon.For morphogen-induced patterning of gene expression,the positional information encoded in the local morphogen concentrations is decoded by the downstream genetic network(the decoder).In this paper,we show that the requirement of scaling sets severe constraints on the geometric structure of such a local decoder,which in turn enables deduction of mutants’behavior and extraction of regulation information without going into any molecular details.We demonstrate that the Drosophila gap gene system achieves scaling in the way consistent with our theory—the decoder geometry required by scaling correctly accounts for the observed gap gene expression pattern in nearly all maternal morphogen mutants.Furthermore,the regulation logic and the coding/decoding strategy of the gap gene system can also be revealed from the decoder geometry.Our work provides a general theoretical framework for a large class of problems where scaling output is achieved by non-scaling inputs and a local decoder,as well as a unified understanding of scaling,mutants’behavior,and gene regulation for the Drosophila gap gene system.