Attributing to their broad pharmacological effects encompassing anti-inflammation,antitoxin,and immunosuppression,glucocorticoids(GCs)are extensively utilized in the clinic for the treatment of diverse diseases such a...Attributing to their broad pharmacological effects encompassing anti-inflammation,antitoxin,and immunosuppression,glucocorticoids(GCs)are extensively utilized in the clinic for the treatment of diverse diseases such as lupus erythematosus,nephritis,arthritis,ulcerative colitis,asthma,keratitis,macular edema,and leukemia.However,longterm use often causes undesirable side effects,including metabolic disorders-induced Cushing's syndrome(buffalo back,full moon face,hyperglycemia,etc.),osteoporosis,aggravated infection,psychosis,glaucoma,and cataract.These notorious side effects seriously compromise patients'quality of life,especially in patients with chronic diseases.Therefore,glucocorticoid-based advanced drug delivery systems for reducing adverse effects have received extensive attention.Among them,prodrugs have the advantages of low investment,low risk,and high success rate,making them a promising strategy.In this review,we propose the strategies for the design and summarize current research progress of glucocorticoid-based prodrugs in recent decades,including polymer-based prodrugs,dendrimer-based prodrugs,antibody-drug conjugates,peptide-drug conjugates,carbohydrate-based prodrugs,aliphatic acid-based prodrugs and so on.Besides,we also raise issues that need to be focused on during the development of glucocorticoid-based prodrugs.This review is expected to be helpful for the research and development of novel GCs and prodrugs.展开更多
To investigate the effect of supersaturation induced by micelle formation during dissolution on the bioavailability of itraconazole(ITZ)/Soluplus~? solid dispersion. Solid dispersions prepared by hot melt extrusion (H...To investigate the effect of supersaturation induced by micelle formation during dissolution on the bioavailability of itraconazole(ITZ)/Soluplus~? solid dispersion. Solid dispersions prepared by hot melt extrusion (HME) were compressed into tablets directly with other excipients. Dissolution behavior of ITZ tablets was studied by dissolution testing and the morphology of micelles in dissolution media was studied using transmission electron microscopy (TEM). Drug transferring from stomach into intestine was simulated to obtain a supersaturated drug solution. Bioavailability studies were performed on the ITZ tablets and Sporanox~? in beagle dogs. The morphology of micelles in the dissolution media was observed to be spherical in shape, with an average size smaller than 100 nm. The supersaturated solutions formed by Soluplus~? micelles were stable and no precipitation took place over a period of 180 min. Compared with Sporanox~?, ITZ tablets exhibited a 2.50-fold increase in the AUC (0–96) of ITZ and a 1.95-fold increase in its active metabolite hydroxyitraconazole (OHITZ) in the plasma of beagle dogs. The results obtained provided clear evidence that not only the increase in the dissolution rate in the stomach, but also the supersaturation produced by micelles in the small intestine may be of great assistance in the successful development of poorly water-soluble drugs. The micelles formed by Soluplus~? enwrapped the molecular ITZ inside the core which promoted the amount of free drug in the intestinal cavity and carried ITZ through the aqueous boundary layer(ABL), resulting in high absorption by passive transportation across biological membranes. The uptake of intact micelles through pinocytosis together with the inhibition of P-glycoprotein-mediated drug efflux in intestinal epithelia contributed to the absorption of ITZ in the gastrointestinal tract. These results indicate that HME with Soluplus~?, which can induce supersaturation by micelleformation, may be of great assistance to the successful development of poorly watersoluble drugs.展开更多
Efficient oral delivery of drugs treating brain diseases has long been a challenging topic faced by the drug delivery community. Fortunately, polyester nanoparticles offer certain solutions to this problem. This revie...Efficient oral delivery of drugs treating brain diseases has long been a challenging topic faced by the drug delivery community. Fortunately, polyester nanoparticles offer certain solutions to this problem. This review article firstly describes the main obstacles faced by oral administered brain targeting, including:(1)instability in the gastrointestinal tract;(2) poor penetration of the intestinal mucosa and epithelium;(3)blood clearance;and(4) restriction by the BBB. Then the key factors influencing brain-targeting efficiency of orally administered polyester nanoparticles are also discussed, such as size, shape and surface properties. Finally, recent brain-targeting delivery strategies using oral polyester nanoparticles as carriers and their effects on brain drugs transport are reviewed, and the delivery ‘as a whole’ strategy of polyester nanoparticles will provide new insight for oral brain-targeting delivery. And by combination of multiple strategies, both the stability and permeability of polyester nanoparticles can be greatly improved for oral brain drug delivery.展开更多
基金supported by the National Natural Science Foundation of China[82172086]National Key R&D Program of China[2020YFE0201700]+2 种基金Shenyang Science and Technology Talent Support Program[RC210447]Career Development Program for Young and Middle-aged Teachers of Shenyang Pharmaceutical University[ZQN2019004]“Dual Service”Program of University in Shenyang。
文摘Attributing to their broad pharmacological effects encompassing anti-inflammation,antitoxin,and immunosuppression,glucocorticoids(GCs)are extensively utilized in the clinic for the treatment of diverse diseases such as lupus erythematosus,nephritis,arthritis,ulcerative colitis,asthma,keratitis,macular edema,and leukemia.However,longterm use often causes undesirable side effects,including metabolic disorders-induced Cushing's syndrome(buffalo back,full moon face,hyperglycemia,etc.),osteoporosis,aggravated infection,psychosis,glaucoma,and cataract.These notorious side effects seriously compromise patients'quality of life,especially in patients with chronic diseases.Therefore,glucocorticoid-based advanced drug delivery systems for reducing adverse effects have received extensive attention.Among them,prodrugs have the advantages of low investment,low risk,and high success rate,making them a promising strategy.In this review,we propose the strategies for the design and summarize current research progress of glucocorticoid-based prodrugs in recent decades,including polymer-based prodrugs,dendrimer-based prodrugs,antibody-drug conjugates,peptide-drug conjugates,carbohydrate-based prodrugs,aliphatic acid-based prodrugs and so on.Besides,we also raise issues that need to be focused on during the development of glucocorticoid-based prodrugs.This review is expected to be helpful for the research and development of novel GCs and prodrugs.
基金the National Natural Science Foundation of China(NSFC 81102399).
文摘To investigate the effect of supersaturation induced by micelle formation during dissolution on the bioavailability of itraconazole(ITZ)/Soluplus~? solid dispersion. Solid dispersions prepared by hot melt extrusion (HME) were compressed into tablets directly with other excipients. Dissolution behavior of ITZ tablets was studied by dissolution testing and the morphology of micelles in dissolution media was studied using transmission electron microscopy (TEM). Drug transferring from stomach into intestine was simulated to obtain a supersaturated drug solution. Bioavailability studies were performed on the ITZ tablets and Sporanox~? in beagle dogs. The morphology of micelles in the dissolution media was observed to be spherical in shape, with an average size smaller than 100 nm. The supersaturated solutions formed by Soluplus~? micelles were stable and no precipitation took place over a period of 180 min. Compared with Sporanox~?, ITZ tablets exhibited a 2.50-fold increase in the AUC (0–96) of ITZ and a 1.95-fold increase in its active metabolite hydroxyitraconazole (OHITZ) in the plasma of beagle dogs. The results obtained provided clear evidence that not only the increase in the dissolution rate in the stomach, but also the supersaturation produced by micelles in the small intestine may be of great assistance in the successful development of poorly water-soluble drugs. The micelles formed by Soluplus~? enwrapped the molecular ITZ inside the core which promoted the amount of free drug in the intestinal cavity and carried ITZ through the aqueous boundary layer(ABL), resulting in high absorption by passive transportation across biological membranes. The uptake of intact micelles through pinocytosis together with the inhibition of P-glycoprotein-mediated drug efflux in intestinal epithelia contributed to the absorption of ITZ in the gastrointestinal tract. These results indicate that HME with Soluplus~?, which can induce supersaturation by micelleformation, may be of great assistance to the successful development of poorly watersoluble drugs.
基金supported by the National Key R&D Program of China (No. 2020YFE0201700)the National Mega-project for Innovative Drugs (No. 2019ZX09721001)+3 种基金the National Natural Science Foundation of China (No. 81673378)the Liaoning Revitalization Talents Program (No. XLYC1908031)the Project of Liaoning Provincial Department of Education (No. 2019LQN07)the PhD Research Startup Foundation of Liaoning Province (No. 2020-BS-128)。
文摘Efficient oral delivery of drugs treating brain diseases has long been a challenging topic faced by the drug delivery community. Fortunately, polyester nanoparticles offer certain solutions to this problem. This review article firstly describes the main obstacles faced by oral administered brain targeting, including:(1)instability in the gastrointestinal tract;(2) poor penetration of the intestinal mucosa and epithelium;(3)blood clearance;and(4) restriction by the BBB. Then the key factors influencing brain-targeting efficiency of orally administered polyester nanoparticles are also discussed, such as size, shape and surface properties. Finally, recent brain-targeting delivery strategies using oral polyester nanoparticles as carriers and their effects on brain drugs transport are reviewed, and the delivery ‘as a whole’ strategy of polyester nanoparticles will provide new insight for oral brain-targeting delivery. And by combination of multiple strategies, both the stability and permeability of polyester nanoparticles can be greatly improved for oral brain drug delivery.