Foreign trade drives China's growth,but as the trade scale continues to expand,the carbon emissions also increase quickly.Based on the industry panel data from 1996 to 2010,this paper calculates carbon emissions o...Foreign trade drives China's growth,but as the trade scale continues to expand,the carbon emissions also increase quickly.Based on the industry panel data from 1996 to 2010,this paper calculates carbon emissions of 27manufacturing industries.According to the intensity of carbon emissions,this paper divides the manufacturing sectors into low carbon and high carbon manufacturing industry and then analyzes the carbon emission trends.Next,the paper uses the feasible generalized least square regression to verify the existence of environmental Kuznets curve(EKC)of the manufacturing industry's carbon.In order to investigate the carbon leakage problem,the regression also includes the interaction term between trade and industrial value added.Our findings are as follows:the carbon emissions of the whole manufacturing industry and low carbon manufacturing industry accord with the EKC curve,but have a linear relationship with the high carbon manufacturing industry;trade reduces the carbon emissions of the whole manufacturing industry and low carbon manufacturing industry,but it increases those of the high carbon manufacturing industry;for the whole manufacturing industry and low carbon manufacturing industry,there is no carbon leakage,but it exists in the high carbon manufacturing industry.On the whole,pollution haven hypothesis does not hold up in China,and China does not need to limit industry foreign trade to reduce the emission of CO_2.But the manufacturing industry will still be the main engine of the economic growth,and therefore our country should make an effective low-carbon policy,introduce advanced technology,increase R&D investment into lowcarbon technologies,and upgrade and transform the original equipment to change the backward mode of production.展开更多
Ever since the concept of swarm intelligence was brought out, a variety of control algorithms for swarm robotics has been put forward, and many of these algorithms are stable enough and efficient. Most of the research...Ever since the concept of swarm intelligence was brought out, a variety of control algorithms for swarm robotics has been put forward, and many of these algorithms are stable enough and efficient. Most of the researches only take an invariable controller which functions through the whole stage into consideration, the situation in which controller changes over time is rarely taken into account. However, there are limitations for invariable controller dominated algorithms in practical situation,which makes them unable to meet changing environment. On the contrary, variable controller is more flexible and can be able to adapt to complex environment. Considering such advantages,a time-varying algorithm for swarm robotics is presented in this paper. The algorithm takes time as one of the independent variables so that the controller is no longer fixed through the time,but can be changed over time, which brings more choices for the swarm robot system. In this paper, some relevant simulations are designed to test the algorithm. Different control strategies are applied on the same flock during the time, and a more complex,flexible and practical control effect is acquired successfully.展开更多
基金supported by National Natural Science Foundation of China[grant number 71273115]
文摘Foreign trade drives China's growth,but as the trade scale continues to expand,the carbon emissions also increase quickly.Based on the industry panel data from 1996 to 2010,this paper calculates carbon emissions of 27manufacturing industries.According to the intensity of carbon emissions,this paper divides the manufacturing sectors into low carbon and high carbon manufacturing industry and then analyzes the carbon emission trends.Next,the paper uses the feasible generalized least square regression to verify the existence of environmental Kuznets curve(EKC)of the manufacturing industry's carbon.In order to investigate the carbon leakage problem,the regression also includes the interaction term between trade and industrial value added.Our findings are as follows:the carbon emissions of the whole manufacturing industry and low carbon manufacturing industry accord with the EKC curve,but have a linear relationship with the high carbon manufacturing industry;trade reduces the carbon emissions of the whole manufacturing industry and low carbon manufacturing industry,but it increases those of the high carbon manufacturing industry;for the whole manufacturing industry and low carbon manufacturing industry,there is no carbon leakage,but it exists in the high carbon manufacturing industry.On the whole,pollution haven hypothesis does not hold up in China,and China does not need to limit industry foreign trade to reduce the emission of CO_2.But the manufacturing industry will still be the main engine of the economic growth,and therefore our country should make an effective low-carbon policy,introduce advanced technology,increase R&D investment into lowcarbon technologies,and upgrade and transform the original equipment to change the backward mode of production.
基金supported by the Beijing Municipal Natural Science Foundation(4152004)the National Natural Science Foundation of China(61204040)
文摘Ever since the concept of swarm intelligence was brought out, a variety of control algorithms for swarm robotics has been put forward, and many of these algorithms are stable enough and efficient. Most of the researches only take an invariable controller which functions through the whole stage into consideration, the situation in which controller changes over time is rarely taken into account. However, there are limitations for invariable controller dominated algorithms in practical situation,which makes them unable to meet changing environment. On the contrary, variable controller is more flexible and can be able to adapt to complex environment. Considering such advantages,a time-varying algorithm for swarm robotics is presented in this paper. The algorithm takes time as one of the independent variables so that the controller is no longer fixed through the time,but can be changed over time, which brings more choices for the swarm robot system. In this paper, some relevant simulations are designed to test the algorithm. Different control strategies are applied on the same flock during the time, and a more complex,flexible and practical control effect is acquired successfully.