Unlike most of the conventional ionic liquids(ILs) derived from non-renewable resources, five environmentally friendly ILs([Ch][AA] ILs) derived from amino acids(AAs) and choline(Ch) were synthesized using biomaterial...Unlike most of the conventional ionic liquids(ILs) derived from non-renewable resources, five environmentally friendly ILs([Ch][AA] ILs) derived from amino acids(AAs) and choline(Ch) were synthesized using biomaterials by a simple, green route: acid–base reaction of Ch and AAs. The thermal and corrosion properties, as well as viscosity, of the prepared ILs were examined. The results revealed that the anion structure of ILs plays a dominant role in their thermal and viscosity behavior. These ILs exhibited less corrosion toward copper, related to their halogen-, sulfur-, and phosphorus-free characteristics. The tribological behavior of the synthesized ILs was examined using a Schwingungs Reibung und Verschleiss tester, and the results indicated that these ILs exhibit good friction-reducing and anti-wear properties as lubricants for steel/steel contact. Results from energy-dispersive spectroscopy and X-ray photoelectron spectroscopy indicated that the good tribological properties of [Ch][AA] ILs are related to the formation of a physically adsorbed film on the metal surface during friction.展开更多
Lamellar compounds such as the disulfides of molybdenum and tungsten are widely used as additives in lubricant oils or as solid lubricants in aerospace industries.The dioxides of these two transition metals have ident...Lamellar compounds such as the disulfides of molybdenum and tungsten are widely used as additives in lubricant oils or as solid lubricants in aerospace industries.The dioxides of these two transition metals have identical microstructures with those of the disulfides.The differences in the lubrication behaviors of disulfide and dioxides were investigated theoretically.Tungsten dioxide and molybdenum dioxide exhibit higher bond strengths at the interface and lower interlayer interactions than those of the disulfides which indicates their superlubricity.Furthermore,the topography of the electron density of the single layer nanostructure determined their sliding potential barrier;the dioxides showed a weaker electronic cloud distribution between the two neighboring oxygen atoms,which facilitated the oxygen atoms of the counterpart to go through.For commensurate friction,the dioxides exhibited nearly the same value of friction work,and same was the case for the disulfides.The lower positive value of friction work for the dioxides confirmed their improved lubricity than the disulfides and the higher mechanical strength of the bulk dioxides demonstrated that they are excellent solid lubricants in vacuum.展开更多
In order to increase the life of spacecraft, it is important to improve the comprehensive lubrication performance. Multiple alkylated cyclopentane (MAC) lubricants are presently gaining wide acceptance for actual spac...In order to increase the life of spacecraft, it is important to improve the comprehensive lubrication performance. Multiple alkylated cyclopentane (MAC) lubricants are presently gaining wide acceptance for actual space applications; adding extreme pressure additive is a strategy to improve lubrication performance. In this study, taking 1,3,4-tri-(2-octyldodecyl) cyclopentane as base oil, tricresol phosphate (traditional additive) and tri-(2-octyldodecyl) phosphate (developmental additive) have been screened computationally for compatibility, shear film forming and energy dissipation. Theoretical results indicate that (a) tricresol phosphate additive is not suited for addition to 1,3,4-tri-(2-octyldodecyl) cyclopentane lubricant due to limited compatibility; (b) tri-(2-octyldodecyl) phosphate is an excellent lubricant additive due to its perfect compatibility, ease of forming a shear film on the surface of friction pairs, higher strength, and low energy dissipation; and (c) lubrication occurs through the solid-liquid composite lubrication mechanism. These theoretical results were confirmed experimentally.展开更多
基金National Natural Science Foundation of China(Grant Nos.51605471 and 51505460)National 973 program(No.2013CB632301)for financial support
文摘Unlike most of the conventional ionic liquids(ILs) derived from non-renewable resources, five environmentally friendly ILs([Ch][AA] ILs) derived from amino acids(AAs) and choline(Ch) were synthesized using biomaterials by a simple, green route: acid–base reaction of Ch and AAs. The thermal and corrosion properties, as well as viscosity, of the prepared ILs were examined. The results revealed that the anion structure of ILs plays a dominant role in their thermal and viscosity behavior. These ILs exhibited less corrosion toward copper, related to their halogen-, sulfur-, and phosphorus-free characteristics. The tribological behavior of the synthesized ILs was examined using a Schwingungs Reibung und Verschleiss tester, and the results indicated that these ILs exhibit good friction-reducing and anti-wear properties as lubricants for steel/steel contact. Results from energy-dispersive spectroscopy and X-ray photoelectron spectroscopy indicated that the good tribological properties of [Ch][AA] ILs are related to the formation of a physically adsorbed film on the metal surface during friction.
基金the National Nature Science Foundation of China,the 'Top Hundred Talents' Program of Chinese Academy of Sciences and the National Key Basic Research and Development (973) Program of China (2013CB632300) for financial support
文摘Lamellar compounds such as the disulfides of molybdenum and tungsten are widely used as additives in lubricant oils or as solid lubricants in aerospace industries.The dioxides of these two transition metals have identical microstructures with those of the disulfides.The differences in the lubrication behaviors of disulfide and dioxides were investigated theoretically.Tungsten dioxide and molybdenum dioxide exhibit higher bond strengths at the interface and lower interlayer interactions than those of the disulfides which indicates their superlubricity.Furthermore,the topography of the electron density of the single layer nanostructure determined their sliding potential barrier;the dioxides showed a weaker electronic cloud distribution between the two neighboring oxygen atoms,which facilitated the oxygen atoms of the counterpart to go through.For commensurate friction,the dioxides exhibited nearly the same value of friction work,and same was the case for the disulfides.The lower positive value of friction work for the dioxides confirmed their improved lubricity than the disulfides and the higher mechanical strength of the bulk dioxides demonstrated that they are excellent solid lubricants in vacuum.
基金the National Nature Science Foundation of China,the 'Top Hundred Talents' Program of Chinese Academy of Sciences and the National Key Basic Research and Development (973) Program of China (No.2013CB632300) for financial support
文摘In order to increase the life of spacecraft, it is important to improve the comprehensive lubrication performance. Multiple alkylated cyclopentane (MAC) lubricants are presently gaining wide acceptance for actual space applications; adding extreme pressure additive is a strategy to improve lubrication performance. In this study, taking 1,3,4-tri-(2-octyldodecyl) cyclopentane as base oil, tricresol phosphate (traditional additive) and tri-(2-octyldodecyl) phosphate (developmental additive) have been screened computationally for compatibility, shear film forming and energy dissipation. Theoretical results indicate that (a) tricresol phosphate additive is not suited for addition to 1,3,4-tri-(2-octyldodecyl) cyclopentane lubricant due to limited compatibility; (b) tri-(2-octyldodecyl) phosphate is an excellent lubricant additive due to its perfect compatibility, ease of forming a shear film on the surface of friction pairs, higher strength, and low energy dissipation; and (c) lubrication occurs through the solid-liquid composite lubrication mechanism. These theoretical results were confirmed experimentally.