期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ovarian tumor-associated microRNA-20a decreases natural killer cell cytotoxicity by downregulating MICA/B expression 被引量:11
1
作者 jingyan xie Mengna Liu +3 位作者 Yujuan Li Yunzhong Nie Qiongyu Mi Shuli Zhao 《Cellular & Molecular Immunology》 SCIE CAS CSCD 2014年第5期495-502,共8页
MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs, and changes in miRNAs are involved in tumor origin and progression. Studies have shown that miR-20a is overexpressed in human ovarian cancer tissue... MicroRNAs (miRNAs) are a class of small non-coding regulatory RNAs, and changes in miRNAs are involved in tumor origin and progression. Studies have shown that miR-20a is overexpressed in human ovarian cancer tissues and that this miRNA enhances long-term cellular proliferation and invasion capabilities. In this study, a positive correlation between serum miR-20a expression and ovarian cancer stage was observed. We found that miR-20a binds directly to the 3'-untranslated region of MICA/B mRNA, resulting in its degradation and reducing its protein levels on the plasma membrane. Reduction of membrane-bound MICA/B proteins, which are ligands of the natural killer group 2 member D (NKG2D) receptor found on natural killer (NK) cells, y+ T cells and CD8+ T cells, allows tumor cells to evade immune-mediated killing. Notably, antagonizing miR-20a action enhanced the NKG2D-mediated killing of tumor cells in both in vitro and in vivo models of tumors. Taken together, our data indicate that increased levels of miR-20a in tumor cells may indirectly suppress NK cell cytotoxicity by downregulating MICA/B expression. These data provide a potential link between metastasis capability and immune escape of tumor cells from NK cells. 展开更多
关键词 immune escape MICA/B miR-2Oa NKG2D ovarian cancer
原文传递
Ground-based investigations on phase-moving phenomenon with space sublimation cooling for lunar exploration missions
2
作者 Enhui LI Yunze LI +5 位作者 Jixiang WANG Man YUAN jingyan xie Yuehang SUN Lizhu YANG Xianwen NING 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第8期65-74,共10页
The lunar surface is a typical vacuum environment,and its harsh heat rejection conditions bring great challenges to the thermal control technology of the exploration mission.In addition to the radiator,the sublimator ... The lunar surface is a typical vacuum environment,and its harsh heat rejection conditions bring great challenges to the thermal control technology of the exploration mission.In addition to the radiator,the sublimator is recommended as one of the promising options for heat rejection.The sublimator makes use of water to freeze and sublimate in a porous medium,rejecting heat to the vacuum environment.The complex heat and mass transfer process involves many physical phenomena such as the freezing and sublimation phase change of water in the porous medium and the movement of the phase-change interface.In this paper,the visualized ground-based experimental approaches of space sublimation cooling were presented to reveal the moving law of threephase point and the growth phenomenon of ice-peak and icicle in microchannels under vacuum conditions.The visualized experiments and results prove that the freezing ice is divided into the porous ice-peak and the transparent icicle.As the sublimation progresses,the phase-change interface moves downward steadily,the length of the ice-peak increases,but the icicle decreases.The visualized experiments of space sublimation cooling in the capillary have guiding significance to reveal the sublimation cooling mechanism of water in the sublimator for lunar exploration missions. 展开更多
关键词 Lunar vacuum environment Phase-change flow Space sublimation cooling Unsteady phase-moving phenomenon Visualized ground-based experimental approaches
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部