期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Co3O4 nanocage derived from metal-organic frameworks: An excellent cathode catalyst for rechargeable Li-O2 battery 被引量:6
1
作者 Zhuoliang Jiang Hui Sun +5 位作者 Wenke Shi Tianhang Zhou Jianyong Hu jingyang cheng Pengfei Hu Shigang Sun 《Nano Research》 SCIE EI CAS CSCD 2019年第7期1555-1562,共8页
Rechargeable non-aqueous Li-O2 battery is regarded as one of the most promising energy-storage technologies on account of its high energy density.It is believed that the rational design of three-dimensional (3D) archi... Rechargeable non-aqueous Li-O2 battery is regarded as one of the most promising energy-storage technologies on account of its high energy density.It is believed that the rational design of three-dimensional (3D) architecture for catalyst is a key factor for the remarkable performance.Metal-organic frameworks (MOFs) derived materials possess excellent architecture,which is beneficial for Li-O2 batteries.In this work,ZIF-67 is used as precursor template and calcinated under different temperature to produce Co3O4 crystals.When the anneal treatment is under 350℃,the derived Co3O4 nanocage holds the most complete skeleton,which provides better charge transfer ability as well as O2 and Li^+ diffusion.Meanwhile,the Co3O4 nanocage owns more oxygen vacancies,offering more active sites.With the synergistic effect of nanocage structure and active sites,the Co3O4 nanocage stably delivers a large specific capacity of 15,500 mAh·g^-1 as well as a long cycle-life of 132 cycles at limited discharge capacity of 1,000 mAh·g^-1 under discharge/charge current density of 0.5 A·g^-1. 展开更多
关键词 U-O2 batteries METAL-ORGANIC framework (MOF)-derived CO3O4 NANOCAGE CO3O4 POLYHEDRON CO3O4 particle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部