Rechargeable non-aqueous Li-O2 battery is regarded as one of the most promising energy-storage technologies on account of its high energy density.It is believed that the rational design of three-dimensional (3D) archi...Rechargeable non-aqueous Li-O2 battery is regarded as one of the most promising energy-storage technologies on account of its high energy density.It is believed that the rational design of three-dimensional (3D) architecture for catalyst is a key factor for the remarkable performance.Metal-organic frameworks (MOFs) derived materials possess excellent architecture,which is beneficial for Li-O2 batteries.In this work,ZIF-67 is used as precursor template and calcinated under different temperature to produce Co3O4 crystals.When the anneal treatment is under 350℃,the derived Co3O4 nanocage holds the most complete skeleton,which provides better charge transfer ability as well as O2 and Li^+ diffusion.Meanwhile,the Co3O4 nanocage owns more oxygen vacancies,offering more active sites.With the synergistic effect of nanocage structure and active sites,the Co3O4 nanocage stably delivers a large specific capacity of 15,500 mAh·g^-1 as well as a long cycle-life of 132 cycles at limited discharge capacity of 1,000 mAh·g^-1 under discharge/charge current density of 0.5 A·g^-1.展开更多
基金the National Key R&D Program of China (No.2016YFB0100200)Science Foundation of China University of Petroleum,Beijing (C201604,No.2462014YJRC003)State key laboratory of physical chemistry of solid surfaces,Xiamen University (No.201703).
文摘Rechargeable non-aqueous Li-O2 battery is regarded as one of the most promising energy-storage technologies on account of its high energy density.It is believed that the rational design of three-dimensional (3D) architecture for catalyst is a key factor for the remarkable performance.Metal-organic frameworks (MOFs) derived materials possess excellent architecture,which is beneficial for Li-O2 batteries.In this work,ZIF-67 is used as precursor template and calcinated under different temperature to produce Co3O4 crystals.When the anneal treatment is under 350℃,the derived Co3O4 nanocage holds the most complete skeleton,which provides better charge transfer ability as well as O2 and Li^+ diffusion.Meanwhile,the Co3O4 nanocage owns more oxygen vacancies,offering more active sites.With the synergistic effect of nanocage structure and active sites,the Co3O4 nanocage stably delivers a large specific capacity of 15,500 mAh·g^-1 as well as a long cycle-life of 132 cycles at limited discharge capacity of 1,000 mAh·g^-1 under discharge/charge current density of 0.5 A·g^-1.