期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Superior activity of Rh1/ZnO single-atom catalyst for CO oxidation 被引量:6
1
作者 Bing Han Rui Lang +4 位作者 Hailian Tang Jia Xu Xiang-Kui Gu Botao Qiao jingyue(jimmy)liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第12期1847-1853,共7页
CO oxidation is of great importance in both fundamental study and industrial application.Supported noble metal catalysts are highly active for CO oxidation but suffer from the scarcity and high cost.Single-atom cataly... CO oxidation is of great importance in both fundamental study and industrial application.Supported noble metal catalysts are highly active for CO oxidation but suffer from the scarcity and high cost.Single-atom catalysts(SACs)can maximize the metal atom efficiency.Herein,ZnO nanowire(ZnO-nw)supported Rh,Au,and Pt SACs were successfully developed to investigate their CO oxidation performance.Interestingly,it was found that Rh1/ZnO-nw showed much higher activity than the other noble metals which are usually regarded as good candidates for CO oxidation.In addition,the Rh SAC possessed high stability in high-temperature CO oxidation under simulated conditions in the presence of water and hydrocarbons.The high activity and stability make Rh1/ZnO-nw promising for practical applications,especially in the automotive exhaust emission control.Theoretical calculations indicate that the CO oxidation proceeds via the Mars-van Krevelen mechanism and the lowest barrier for the rate-limiting O2 dissociation at a surface oxygen vacancy site is a key factor in determining the observed highest activity of Rh1/ZnO-nw amongst the studied SACs. 展开更多
关键词 Single-atom catalysis Carbon monoxide oxidation RHODIUM Zinc oxide nanowire Density functional theory calculations
下载PDF
High performance perovskite solar cells using TiO2 nanospindles as ultrathin mesoporous layer 被引量:3
2
作者 Yinhua Lv Bing Cai +5 位作者 Yihui Wu Shubo Wang Qike Jiang Qingshan Ma jingyue(jimmy)liu Wen-Hua Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期951-956,共6页
Single crystal anatase TiO2 nanospindles (NSs) with highly exposed {101} facets were synthesized and employed as electron transport materials (ETMs) in perovskite solar cells (PSCs). Time-resolved photoluminesce... Single crystal anatase TiO2 nanospindles (NSs) with highly exposed {101} facets were synthesized and employed as electron transport materials (ETMs) in perovskite solar cells (PSCs). Time-resolved photoluminescence (TRPL) spectra revealed that the TiO2 NSs are more effective than TiO2 nanoparticles in accepting electrons from perovskite. Moreover. the TiO2 nanospindles further endowed the PSCs with good reproducibility and suppressed hysteresis. The best device with TiO2 NSs as ETMs yielded power conversion efficiency (PCE) of 19.6%, demonstrating that the home-made TiO2 NSs is a good ETM for PSCs. 展开更多
关键词 Electron transport material Perovskite solar cell TiO2 nanospindles Ultrathin mesoporous layer
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部