CO oxidation is of great importance in both fundamental study and industrial application.Supported noble metal catalysts are highly active for CO oxidation but suffer from the scarcity and high cost.Single-atom cataly...CO oxidation is of great importance in both fundamental study and industrial application.Supported noble metal catalysts are highly active for CO oxidation but suffer from the scarcity and high cost.Single-atom catalysts(SACs)can maximize the metal atom efficiency.Herein,ZnO nanowire(ZnO-nw)supported Rh,Au,and Pt SACs were successfully developed to investigate their CO oxidation performance.Interestingly,it was found that Rh1/ZnO-nw showed much higher activity than the other noble metals which are usually regarded as good candidates for CO oxidation.In addition,the Rh SAC possessed high stability in high-temperature CO oxidation under simulated conditions in the presence of water and hydrocarbons.The high activity and stability make Rh1/ZnO-nw promising for practical applications,especially in the automotive exhaust emission control.Theoretical calculations indicate that the CO oxidation proceeds via the Mars-van Krevelen mechanism and the lowest barrier for the rate-limiting O2 dissociation at a surface oxygen vacancy site is a key factor in determining the observed highest activity of Rh1/ZnO-nw amongst the studied SACs.展开更多
Single crystal anatase TiO2 nanospindles (NSs) with highly exposed {101} facets were synthesized and employed as electron transport materials (ETMs) in perovskite solar cells (PSCs). Time-resolved photoluminesce...Single crystal anatase TiO2 nanospindles (NSs) with highly exposed {101} facets were synthesized and employed as electron transport materials (ETMs) in perovskite solar cells (PSCs). Time-resolved photoluminescence (TRPL) spectra revealed that the TiO2 NSs are more effective than TiO2 nanoparticles in accepting electrons from perovskite. Moreover. the TiO2 nanospindles further endowed the PSCs with good reproducibility and suppressed hysteresis. The best device with TiO2 NSs as ETMs yielded power conversion efficiency (PCE) of 19.6%, demonstrating that the home-made TiO2 NSs is a good ETM for PSCs.展开更多
基金supported by the National Natural Science Foundation of China(21606222,21776270)Liaoning Revitalization Talents Program(XLYC1807068)+1 种基金DNL Cooperation Fund,CAS(180403)US National Science Foundation under CHE-1465057~~
文摘CO oxidation is of great importance in both fundamental study and industrial application.Supported noble metal catalysts are highly active for CO oxidation but suffer from the scarcity and high cost.Single-atom catalysts(SACs)can maximize the metal atom efficiency.Herein,ZnO nanowire(ZnO-nw)supported Rh,Au,and Pt SACs were successfully developed to investigate their CO oxidation performance.Interestingly,it was found that Rh1/ZnO-nw showed much higher activity than the other noble metals which are usually regarded as good candidates for CO oxidation.In addition,the Rh SAC possessed high stability in high-temperature CO oxidation under simulated conditions in the presence of water and hydrocarbons.The high activity and stability make Rh1/ZnO-nw promising for practical applications,especially in the automotive exhaust emission control.Theoretical calculations indicate that the CO oxidation proceeds via the Mars-van Krevelen mechanism and the lowest barrier for the rate-limiting O2 dissociation at a surface oxygen vacancy site is a key factor in determining the observed highest activity of Rh1/ZnO-nw amongst the studied SACs.
基金supported by the National Natural Science Foundation of China(Grand No.21773128)Key Research and Development Projects of Sichuan Province(Grand No.2017GZ0052)+1 种基金National Postdoctoral Program for Innovative Talents(BX201600138)Anshan Hifichem Co.,Ltd
文摘Single crystal anatase TiO2 nanospindles (NSs) with highly exposed {101} facets were synthesized and employed as electron transport materials (ETMs) in perovskite solar cells (PSCs). Time-resolved photoluminescence (TRPL) spectra revealed that the TiO2 NSs are more effective than TiO2 nanoparticles in accepting electrons from perovskite. Moreover. the TiO2 nanospindles further endowed the PSCs with good reproducibility and suppressed hysteresis. The best device with TiO2 NSs as ETMs yielded power conversion efficiency (PCE) of 19.6%, demonstrating that the home-made TiO2 NSs is a good ETM for PSCs.