期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis 被引量:4
1
作者 Kai Zhang Yawei Li +6 位作者 jingyun liang Jiezhang Cao Yulun Zhang Hao Tang Deng-Ping Fan Radu Timofte Luc Van Gool 《Machine Intelligence Research》 EI CSCD 2023年第6期822-836,共15页
While recent years have witnessed a dramatic upsurge of exploiting deep neural networks toward solving image denoising,existing methods mostly rely on simple noise assumptions,such as additive white Gaussian noise(AWG... While recent years have witnessed a dramatic upsurge of exploiting deep neural networks toward solving image denoising,existing methods mostly rely on simple noise assumptions,such as additive white Gaussian noise(AWGN),JPEG compression noise and camera sensor noise,and a general-purpose blind denoising method for real images remains unsolved.In this paper,we attempt to solve this problem from the perspective of network architecture design and training data synthesis.Specifically,for the network architecture design,we propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block,and then plug it as the main building block into the widely-used image-to-image translation UNet architecture.For the training data synthesis,we design a practical noise degradation model which takes into consideration different kinds of noise(including Gaussian,Poisson,speckle,JPEG compression,and processed camera sensor noises)and resizing,and also involves a random shuffle strategy and a double degradation strategy.Extensive experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance and the new degradation model can help to significantly improve the practicability.We believe our work can provide useful insights into current denoising research.The source code is available at https://github.com/cszn/SCUNet. 展开更多
关键词 Blind image denoising real image denosing data synthesis Transformer image signal processing(ISP)pipeline
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部