Converting CO_(2)into carbonaceous fuels via photocatalysis represents an appealing strategy to simultaneously alleviate the energy crisis and associated environmental problems,yet designing with high photoreduction a...Converting CO_(2)into carbonaceous fuels via photocatalysis represents an appealing strategy to simultaneously alleviate the energy crisis and associated environmental problems,yet designing with high photoreduction activity catalysts remains a compelling challenge.Here,combining the merits of highly porous structure and maximum atomic efficiency,we rationally constructed covalent triazine-based frameworks(CTFs)anchoring copper single atoms(Cu-SA/CTF)photocatalysts for efficient CO_(2)conversion.The Cu single atoms were visualized by high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)images and coordination structure of Cu-N-C2 sites was revealed by extended X-ray absorption fine structure(EXAFS)analyses.The as-prepared Cu-SA/CTF photocatalysts exhibited superior photocatalytic CO_(2)conversion to CH4 performance associated with a high selectivity of 98.31%.Significantly,the introduction of Cu single atoms endowed the CuSA/CTF catalysts with increased CO_(2)adsorption capacity,strengthened visible light responsive ability,and improved the photogenerated carriers separation efficiency,thus enhancing the photocatalytic activity.This work provides useful guidelines for designing robust visible light responsive photoreduction CO_(2)catalysts on the atomic scale.展开更多
Single-atom catalysts(SACs)have emerged as an advanced frontier in heterogeneous catalysis due to their potential to maximize the atomic efficiency.Herein,covalent triazine-based frameworks(CTFs)confining cobalt singl...Single-atom catalysts(SACs)have emerged as an advanced frontier in heterogeneous catalysis due to their potential to maximize the atomic efficiency.Herein,covalent triazine-based frameworks(CTFs)confining cobalt single atoms(Co-SA/CTF)photocatalysts have been synthesized and used for efficient CO_(2) reduction and hydrogen production under visible light irradiation.The resulted Co-SA/CTF demonstrate excellent photocatalytic activity,with the CO and H2 evolution rates reaching 1665.74μmol g^(−1) h^(−1) and 1293.18μmol g^(−1) h^(−1),respectively,far surpassing those of Co nanoparticles anchored CTF and pure CTF.A variety of instrumental analyses collectively indicated that Co single atoms sites served as the reaction center for activating the adsorbed CO_(2) molecules,which significantly improved the CO_(2) reduction performance.Additionally,the introduction of Co single atoms could accelerate the separation/transfer of photogenerated charge carriers,thus boosting the photocatalytic performance.This study envisions a novel strategy for designing efficient photocatalysts for energy conversion and showcases the application of CTFs as attractive support for confining metal single atoms.展开更多
基金the National Natural Science Foundation of China(Nos.51672047,21707173,and 21701168)Dalian high level talent innovation project(No.2019RQ063)+2 种基金the National Natural Science Foundation of Fujian Province(Nos.2019J01648 and 2019J01226)Open project Foundation of State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences(No.20200021)the Youth Talent Support Program of Fujian Province(No.00387077).
文摘Converting CO_(2)into carbonaceous fuels via photocatalysis represents an appealing strategy to simultaneously alleviate the energy crisis and associated environmental problems,yet designing with high photoreduction activity catalysts remains a compelling challenge.Here,combining the merits of highly porous structure and maximum atomic efficiency,we rationally constructed covalent triazine-based frameworks(CTFs)anchoring copper single atoms(Cu-SA/CTF)photocatalysts for efficient CO_(2)conversion.The Cu single atoms were visualized by high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM)images and coordination structure of Cu-N-C2 sites was revealed by extended X-ray absorption fine structure(EXAFS)analyses.The as-prepared Cu-SA/CTF photocatalysts exhibited superior photocatalytic CO_(2)conversion to CH4 performance associated with a high selectivity of 98.31%.Significantly,the introduction of Cu single atoms endowed the CuSA/CTF catalysts with increased CO_(2)adsorption capacity,strengthened visible light responsive ability,and improved the photogenerated carriers separation efficiency,thus enhancing the photocatalytic activity.This work provides useful guidelines for designing robust visible light responsive photoreduction CO_(2)catalysts on the atomic scale.
基金financially supported by the National Natural Science Foundation of China(Nos.51672047,21707173)the Youth Talent Support Program of Fujian Province(00387077)the National Natural Science Foundation of Fujian Province(Nos.2019J01648,2019J01226)。
文摘Single-atom catalysts(SACs)have emerged as an advanced frontier in heterogeneous catalysis due to their potential to maximize the atomic efficiency.Herein,covalent triazine-based frameworks(CTFs)confining cobalt single atoms(Co-SA/CTF)photocatalysts have been synthesized and used for efficient CO_(2) reduction and hydrogen production under visible light irradiation.The resulted Co-SA/CTF demonstrate excellent photocatalytic activity,with the CO and H2 evolution rates reaching 1665.74μmol g^(−1) h^(−1) and 1293.18μmol g^(−1) h^(−1),respectively,far surpassing those of Co nanoparticles anchored CTF and pure CTF.A variety of instrumental analyses collectively indicated that Co single atoms sites served as the reaction center for activating the adsorbed CO_(2) molecules,which significantly improved the CO_(2) reduction performance.Additionally,the introduction of Co single atoms could accelerate the separation/transfer of photogenerated charge carriers,thus boosting the photocatalytic performance.This study envisions a novel strategy for designing efficient photocatalysts for energy conversion and showcases the application of CTFs as attractive support for confining metal single atoms.