期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Statistical Inference for Partially Linear Regression Models with Measurement Errors 被引量:6
1
作者 jinhong you Qinfeng XU Bin ZHOU 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2008年第2期207-222,共16页
In this paper,the authors investigate three aspects of statistical inference for the partially linear regression models where some covariates are measured with errors.Firstly, a bandwidth selection procedure is propos... In this paper,the authors investigate three aspects of statistical inference for the partially linear regression models where some covariates are measured with errors.Firstly, a bandwidth selection procedure is proposed,which is a combination of the differencebased technique and GCV method.Secondly,a goodness-of-fit test procedure is proposed, which is an extension of the generalized likelihood technique.Thirdly,a variable selection procedure for the parametric part is provided based on the nonconcave penalization and corrected profile least squares.Same as"Variable selection via nonconcave penalized likelihood and its oracle properties"(J.Amer.Statist.Assoc.,96,2001,1348-1360),it is shown that the resulting estimator has an oracle property with a proper choice of regularization parameters and penalty function.Simulation studies are conducted to illustrate the finite sample performances of the proposed procedures. 展开更多
关键词 Partially linear model Measurement error Bandwidth selection Goodness-of-fit test Oracle property
原文传递
存在趋势和周期特征的非平稳时间序列的建模及其应用 被引量:3
2
作者 王守霞 尤进红 黄涛 《中国科学:数学》 CSCD 北大核心 2022年第2期177-208,共32页
本文研究存在未知周期和趋势的非平稳时间序列的估计问题.将经典的时间序列分解模型写成一个含有未知参数的部分线性模型,首先采用B-样条逼近未知时间趋势,然后利用惩罚最小二乘回归法得到未知周期、周期序列和趋势的估计.本文还给出估... 本文研究存在未知周期和趋势的非平稳时间序列的估计问题.将经典的时间序列分解模型写成一个含有未知参数的部分线性模型,首先采用B-样条逼近未知时间趋势,然后利用惩罚最小二乘回归法得到未知周期、周期序列和趋势的估计.本文还给出估计量的理论性质,包括周期估计的相合性以及周期序列和趋势估计的渐近性质.模拟研究展现了本文方法的优越性.最后以两个实际数据为例,运用本文方法进行建模估计,展现本文方法的实用性. 展开更多
关键词 周期估计 光滑趋势 B-样条 惩罚最小二乘
原文传递
TWO-STAGE ESTIMATION FOR SEEMINGLY UNRELATED NONPARAMETRIC REGRESSION MODELS 被引量:2
3
作者 jinhong you Shangyu XIE Yong ZHOU 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2007年第4期509-520,共12页
This paper is concerned with the estimating problem of seemingly unrelated (SU) non- parametric regression models. The authors propose a new method to estimate the unknown functions, which is an extension of the two... This paper is concerned with the estimating problem of seemingly unrelated (SU) non- parametric regression models. The authors propose a new method to estimate the unknown functions, which is an extension of the two-stage procedure in the longitudinal data framework. The authors show the resulted estimators are asymptotically normal and more efficient than those based on only the individual regression equation. Some simulation studies are given in support of the asymptotic results. A real data from an ongoing environmental epidemiologie study are used to illustrate the proposed procedure. 展开更多
关键词 Asymptotic normality nonparametrie model seemingly unrelated regression two-stage estimation
原文传递
局部平稳时间序列时变单指标变系数模型及统计推断 被引量:2
4
作者 李涛 胡建华 +1 位作者 尤进红 刘亮元 《中国科学:数学》 CSCD 北大核心 2020年第11期1609-1630,共22页
本文基于局部平稳时间序列数据的特征提出一个新的半参数模型—时变单指标变系数模型.本文采用二步估计的思想给出模型中参数和非参数系数函数的估计方法,并研究这些估计量的渐近性质,包括相合性和渐近正态性.进一步,为了判别模型中的... 本文基于局部平稳时间序列数据的特征提出一个新的半参数模型—时变单指标变系数模型.本文采用二步估计的思想给出模型中参数和非参数系数函数的估计方法,并研究这些估计量的渐近性质,包括相合性和渐近正态性.进一步,为了判别模型中的连接函数是否具有时变性质,本文提出一种假设检验方法,构造相应的检验统计量并证明它的渐近性质.最后,通过模拟和实例展示本文所提估计和检验方法是有效和切实可行的. 展开更多
关键词 局部平稳 单指标变系数模型 两步估计 张量B样条 核估计
原文传递
Weighted Profile Least Squares Estimation for a Panel Data Varying-Coefficient Partially Linear Model
5
作者 Bin ZHOU jinhong you +1 位作者 Qinfeng XU Gemai CHEN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2010年第2期247-272,共26页
This paper is concerned with inference of panel data varying-coefficient partially linear models with a one-way error structure. The model is a natural extension of the well-known panel data linear model (due to Balt... This paper is concerned with inference of panel data varying-coefficient partially linear models with a one-way error structure. The model is a natural extension of the well-known panel data linear model (due to Baltagi 1995) to the setting of semiparametric regressions. The authors propose a weighted profile least squares estimator (WPLSE) and a weighted local polynomial estimator (WLPE) for the parametric and nonparametric components, respectively. It is shown that the WPLSE is asymptotically more efficient than the usual profile least squares estimator (PLSE), and that the WLPE is also asymptotically more efficient than the usual local polynomial estimator (LPE). The latter is an interesting result. According to Ruckstuhl, Welsh and Carroll (2000) and Lin and Carroll (2000), ignoring the correlation structure entirely and "pretending" that the data are really independent will result in more efficient estimators when estimating nonparametric regression with longitudinal or panel data. The result in this paper shows that this is not true when the design points of the nonparametric component have a closeness property within groups. The asymptotic properties of the proposed weighted estimators are derived. In addition, a block bootstrap test is proposed for the goodness of fit of models, which can accommodate the correlations within groups illustrate the finite sample performances of the Some simulation studies are conducted to proposed procedures. 展开更多
关键词 SEMIPARAMETRIC Panel data Local polynomial Weighted estimation Block bootstrap
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部