期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Ultralow Interfacial Thermal Resistance of Graphene Thermal Interface Materials with Surface Metal Liquefaction
1
作者 Wen Dai Xing-Jie Ren +13 位作者 Qingwei Yan Shengding Wang Mingyang Yang Le Lv Junfeng Ying Lu Chen Peidi Tao Liwen Sun Chen Xue jinhong yu Chengyi Song Kazuhito Nishimura Nan Jiang Cheng-Te Lin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期183-196,共14页
Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of hi... Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices.Based on the ultra-high basal-plane thermal conductivity,graphene is an ideal candidate for preparing high-performance TIMs,preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM.However,the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory.In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved,another critical factor is the limited actual contact area leading to relatively high contact thermal resistance(20-30 K mm^(2) W^(−1))of the“solid-solid”mating interface formed by the vertical graphene and the rough chip/heat sink.To solve this common problem faced by vertically aligned graphene,in this work,we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces.Based on rational graphene orientation regulation in the middle tier,the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m^(−1) K^(−1).Additionally,we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a“liquid-solid”mating interface,significantly increasing the effective heat transfer area and giving a low contact thermal con-ductivity of 4-6 K mm^(2) W^(−1) under packaging conditions.This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management. 展开更多
关键词 Vertically aligned graphene Liquid metal Surface modification Thermal interface materials
下载PDF
Rational design of graphene/polymer composites with excellent electromagnetic interference shielding effectiveness and high thermal conductivity: a mini review 被引量:6
2
作者 Xue Tan Qilong yuan +4 位作者 Mengting Qiu jinhong yu Nan Jiang Cheng-Te Lin Wen Dai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第22期238-250,共13页
The integration and miniaturization of chips lead to inevitable overheating and increasing electromagnetic interference (EMI) problems, which threaten the performance, stability, and lifetime of electroniccomponents. ... The integration and miniaturization of chips lead to inevitable overheating and increasing electromagnetic interference (EMI) problems, which threaten the performance, stability, and lifetime of electroniccomponents. Therefore, it is important to improve the heat dissipation and EMI shielding performancein device packaging for the steady operation of electronic products. In recent years, due to its intrinsic superior thermal conductivity, proper electrical conductivity, light-weight, and structural adjustability,graphene has been widely used as high thermal and conductive fillers incorporated in the polymer matrix to improve the thermal conductivity and electrical conductivity of composites. This review concludesthe recent development of graphene/polymer composites by using graphene as fillers to improve thethermal conductivity and EMI shielding effectiveness (EMI SE). The structure of graphene embedded inthe composites varies from zero-dimension (0D), one-dimension (1D) to two-dimensions (2D). Moreover,highly thermally and electrically conductive fillers with different dimensions were also modified on thegraphene to improve the composite performance. Finally, this review also makes prospects for the development trend of graphene/polymer composites with high thermal conductivity and EMI SE in the future. 展开更多
关键词 Graphene/polymer composites Structural design Electromagnetic interference shielding Thermal conductivity
原文传递
Excellent tribological properties of epoxy-Ti3C2 with three-dimensional nanosheets composites 被引量:6
3
作者 Fanning MENG Zhenyu ZHANG +4 位作者 Peili GAO Ruiyang KANG Yash BOYJOO jinhong yu Tingting LIU 《Friction》 SCIE EI CAS CSCD 2021年第4期734-746,共13页
As a widely used engineering polymer,epoxy resin has been successfully employed in high-performance components and setups.However,the poor thermal and friction properties of traditional epoxy resin greatly limit its a... As a widely used engineering polymer,epoxy resin has been successfully employed in high-performance components and setups.However,the poor thermal and friction properties of traditional epoxy resin greatly limit its application in many extreme environments.In this work,a new kind of epoxy-Ti3C2 with three-dimensional nanosheets(3DNS)composite which was designed by freeze-drying method showed up excellent thermal and friction properties.As a result,the coefficient of thermal expansion(CTE)of epoxy-Ti3C23DNS 3.0 composites was 41.9 ppm/K at 40℃,which was lower than that of the traditional epoxy resin(46.7 ppm/K),and the thermal conductivity(TC)was also improved from 0.176 to 0.262 W/(m-K).Meanwhile,epoxy-Ti3C23DNS 1.0 composites showed up the best friction property,with wear rate 76.3%lower than that of epoxy resin.This work is significant for the research of high-performance composite materials. 展开更多
关键词 epoxy-Ti3C23DNS composite three-dimensional nanosheets thermal performances friction properties
原文传递
Enhanced tribological properties of aligned graphene-epoxy composites 被引量:2
4
作者 yuefeng DU Zhenyu ZHANG +8 位作者 Dong WANG Lezhen ZHANG Junfeng CUI Yapeng CHEN Mingliang WU Ruiyang KANG yunxiang LU jinhong yu Nan JIANG 《Friction》 SCIE EI CAS CSCD 2022年第6期854-865,共12页
The random distribution of graphene in epoxy matrix hinders the further applications of grapheneepoxy composites in the field of tribology.Hence,in order to fully utilize the anisotropic properties of graphene,highly ... The random distribution of graphene in epoxy matrix hinders the further applications of grapheneepoxy composites in the field of tribology.Hence,in order to fully utilize the anisotropic properties of graphene,highly aligned graphene-epoxy composites(AGEC)with horizontally oriented structure have been fabricated via an improved vacuum filtration freeze-drying method.The frictional tests results indicated that the wear rate of AGEC slowly increased from 5.19x10^(-6)mm^(3)/(N-m)to 2.87x10^(-5)mm^(3)/(N-m)with the increasing of the normal load from 2 to 10 N,whereas the friction coefficient(COF)remained a constant of 0.109.Compared to the neat epoxy and random graphene-epoxy composites(RGEC),the COF of AGEC was reduced by 87.5%and 71.2%,and the reduction of wear rate was 86.6%and 85.4%at most,respectively.Scanning electron microscope(SEM)observations illustrated that a compact graphene self-lubricant film was formed on the worn surface of AGEC,which enables AGEC to possess excellent tribological performance.Finally,in light of the excellent tribological properties of AGEC,this study highlights a pathway to expand the tribological applications of graphene-epoxy composites. 展开更多
关键词 GRAPHENE ALIGNED epoxy composite tribological performance
原文传递
Enhanced thermal conductivity of epoxy composites with core-shell SiC@SiO_(2) nanowires 被引量:3
5
作者 Dianyu Shen Mengjie Wang +13 位作者 yuming Wu Zhiduo Liu Yong Cao Ting Wang Xinfeng Wu Qingtang Shi Kuan W.A.Chee Wen Dai Hua Bai Dan Dai Jilei Lyu Nan Jiang Cheng-Te Lin jinhong yu 《High Voltage》 SCIE EI 2017年第3期154-160,共7页
Electronic packaging materials and thermal interface materials(TIMs)are widely used in thermal management.In this study,the epoxy composites with core-shell structure SiC@SiO_(2) nanowires(SiC@SiO_(2) NWs)as fillers c... Electronic packaging materials and thermal interface materials(TIMs)are widely used in thermal management.In this study,the epoxy composites with core-shell structure SiC@SiO_(2) nanowires(SiC@SiO_(2) NWs)as fillers could effectively enhance the thermal conductivity of epoxy composites.The unique structure of fillers results in a high thermal conductivity of epoxy composites,which is attributed to good interfacial compatibility epoxy matrix and bridging connections of SiC@SiO_(2) NWs.From neat epoxy to 2.5 wt%loading of SiC@SiO_(2) NWs,the thermal conductivity is significantly increased from 0.218 to 0.391 W m^(−1) K^(−1),increased by 79.4%.In addition,the composite with 2.5 wt%filler possess lower coefficient of thermal expansion and better thermal stability than that of neat epoxy.All these outstanding properties imply that epoxy/SiC@SiO_(2) NWs composites could be the ideal candidate for TIM. 展开更多
关键词 COMPOSITES NANOWIRES COMPOSITE
原文传递
A Spiral Graphene Framework Containing Highly Ordered Graphene Microtubes for Polymer Composites with Superior Through-Plane Thermal Conductivity
6
作者 Jinrui Gong Xue Tan +11 位作者 Qilong yuan Zhiduo Liu Junfeng Ying Le Lv Qingwei Yan Wubo Chu Chen Xue jinhong yu Kazuhito Nishimura Nan Jiang Cheng-Te Lin Wen Dai 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2022年第3期329-336,共8页
As the power density of electronic devices increases,there has been an urgent demand to develop highly conductive polymer composites to address the accompanying thermal management issues.Due to the ultra-high intrinsi... As the power density of electronic devices increases,there has been an urgent demand to develop highly conductive polymer composites to address the accompanying thermal management issues.Due to the ultra-high intrinsic thermal conductivity,graphene is considered a very promising filler to improve the thermal conductivity of polymers.However,graphene-based polymer composites prepared by the conventional mixing method generally have limited thermal conductivity,even under high graphene loading,due to the failure to construct efficient heat transfer pathways in the polymer matrix.Here,a spiral graphene framework(SGF)containing continuous and highly ordered graphene microtubes was developed based on a modified CVD method.After embedding into the epoxy(EP)matrix,the graphene microtubes can act as efficient heat pathways,endowing the SGF/EP composites with a high through-plane thermal conductivity of 1.35 W·m^(-1)·K^(-1) at an ultralow graphene loading of 0.86 wt%.This result gives a thermal conductivity enhancement per 1 wt%filler loading of 710%,significantly outperforming various graphene structures as fillers.In addition,we demonstrated the practical application of the SGF/EP composite as a thermal interface material for efficient thermal man-agement of the light-emitting diode(LED). 展开更多
关键词 GRAPHENE Chemical vapor deposition Polymer Thermal conductivity Thermal management material
原文传递
Layer-by-layer stacked graphene nanocoatings by Marangoni self-assembly for corrosion protection of stainless steel
7
作者 Chen Ye Yangguang Zhu +12 位作者 Hongyan Sun Feiyue Chen Huifang Sun Wen Dai Qiuping Wei Li Fu Aimin yu Shiyu Du Minghui Yang Liang-Feng Huang jinhong yu Nan Jiang Cheng-Te Lin 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第1期501-505,共5页
Graphene nanosheets are widely used in anti-corrosion polymeric coating as filler,owing to the excellent electrochemical inertness and barrier property.However,as the arrangement of graphene nanosheets is difficult to... Graphene nanosheets are widely used in anti-corrosion polymeric coating as filler,owing to the excellent electrochemical inertness and barrier property.However,as the arrangement of graphene nanosheets is difficult to form a perfect layered structure,polymeric coating with graphene nanosheets usually needs micron-scale thickness to ensure the enhancement of corrosion protection.In this work,layer-by-layer stacked graphene nanocoatings were fabricated on stainless steel by self-assembly based on Marangoni effect.The anti-corrosion property of graphene coatings were studied through Tafel polarization curves,electrochemical impedance spectroscopy and accelerated corrosion test with extra applied voltage.The self corrosion current density of optimized three-layered graphene coated sample was one quarter of that of bare stainless steel.And the self corrosion potential of optimized sample is increased to-0.045 V.According to the results,graphene nanocoatings composed of layered nanosheets exhibits good anticorrosion property.Besides,the self-assembly method provide a promising approach to make layeredstructure coating for other researches about 2 D material nanosheets. 展开更多
关键词 SELF-ASSEMBLY Graphene nanosheets Layer-by-layer stacking Electrochemical corrosion Anti-corrosion coating
原文传递
Pt nanodendrites with (111) crystalline facet as an efficient, stable and pH-universal catalyst for electrochemical hydrogen production
8
作者 Huifang Sun Qi Zeng +10 位作者 Chen Ye Yangguang Zhu Feiyue Chen Mingyang Yang Li Fu Shiyu Du jinhong yu Nan Jiang Jianxiong Liu Tianzhun Wu Cheng-Te Lin 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第9期2478-2482,共5页
High-performance nanomaterial catalysts for hydrogen evolution reaction via electrochemical water splitting are significant to the development of hydrogen energy.In this work,we report a robust and highly active catal... High-performance nanomaterial catalysts for hydrogen evolution reaction via electrochemical water splitting are significant to the development of hydrogen energy.In this work,we report a robust and highly active catalyst fabricated through direct electrochemical deposition of Pt nanodendrites at the surface of activated carbon(Pt NDs).Owing to the large elect roc he mically active area and the exposed(111) facet of Pt,Pt NDs exhibits outstanding activity towards hydrogen evolution reaction with a low requiring overpotential of 0.027 V at 10 mA/cm2 and Tafel slope of ≈22 mV/dec in acidic media.In addition,the hydrogen yield of Pt NDs is 30%-45% larger than that of commercial Pt/C at the same Pt loadings.Moreover,Pt NDs exhibits excellent lo ng-term durability whose hydrogen production efficiency remains unchanged after six-hour hydrogen production,while the efficiency of commercial Pt/C catalyst decayed 9% under the same circumstance.Considering the superiority of catalytic activity and stability,this Pt NDs present great potentiality towards practical hydrogen production application. 展开更多
关键词 Platinum nanodendrites Hydrogen evolution reaction Electrocatalytic activity Long-term durability pH-universal property
原文传递
A dense graphene monolith with poloxamer prefunctionalization enabling aqueous redispersion to obtain solubilized graphene sheets
9
作者 Chen Ye Fan Zhang +13 位作者 Xue Tan Huifang Sun Wen Dai Ke Yang Minghui Yang Shiyu Du Dan Dai jinhong yu Nan Jiang Weitao Su Li Fu He Li Jing Kong Cheng-Te Lin 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第9期2507-2511,共5页
The realization of good aqueous dispersibility of commercial graphene products composed of exfoliated graphene sheets is of significance for downstream applications.However,the tap density of commercial graphene powde... The realization of good aqueous dispersibility of commercial graphene products composed of exfoliated graphene sheets is of significance for downstream applications.However,the tap density of commercial graphene powder is quite low(0.03-0.1 kg/m3),meaning that 1 kg graphene powder occupies about 10-30 m3 in volume during transportation.And,the available content of commercial graphene dispersion/slurry in aqueous medium cannot exceed 5 wt%,although the density is high(≈1050 kg/m3).In this work,a graphene monolith was prepared by oven-drying of graphene sheets prefunctionalized with poloxamer surfactants.Our graphene monoliths not only have a high density(1500 kg/m^3) and high graphene content(≈10 wt%),but also a full capability to be completely redispersed(≈100%) in water by bath sonication to obtain solubilized graphene sheets,whose lateral size and thickness are unchanged compared to as-exfoliated ones.Moreover,a simple empirical method was proposed to predict the redispersion capability of graphene monoliths using different poloxamers by contact angle measurements.Our results provide a universal approach to make exfoliated graphene-based products with better downstream availability and lower transportation cost. 展开更多
关键词 Dense monolith Graphene sheets POLOXAMER Aqueous redispersion Surface functionalization
原文传递
Rational design of graphene structures for preparing high-performance thermal interface materials: A mini review
10
作者 Junfeng Ying Wen Dai +3 位作者 jinhong yu Nan Jiang Cheng-Te Lin Qingwei Yan 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2022年第11期46-61,共16页
With the explosive development in integration of electronic components and the increasing complexity of packaging systems,semiconductor chips own extremely high operation temperatures given by the horrible heat accumu... With the explosive development in integration of electronic components and the increasing complexity of packaging systems,semiconductor chips own extremely high operation temperatures given by the horrible heat accumulation attributed to the drastically increasing power density. Therefore, highly efficient heat dissipation with the help of rationally designed thermal interface materials(TIMs) is the key to maintaining the device performance and lifespan. Graphene exhibits an ultrahigh intrinsic thermal conductivity, which has attracted a large amount of academic interest due to its significant potential for developing high-performance TIMs. In this tutorial review, we summarize the recent advances in graphene-based TIMs, especially emphasizing the determinate effects of graphene structure and alignment in enhancing the heat transfer capacity of corresponding samples,with detailed discussion in the superiorities and limitations of various graphene skeletons. In addition, we also provide prospects for the challenges and opportunities in the future development of graphene-based TIMs. 展开更多
关键词 thermal interface material graphene-based composite thermal management thermal conduction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部