期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
“翻转课堂+混合式”教学模式在物理化学实验课程中的探索与实施 被引量:8
1
作者 贾雪平 丁津津 +4 位作者 朱玥 缪建文 葛存旺 张跃华 葛明 《大学化学》 CAS 2023年第1期56-64,共9页
在前期混合式教学改革的基础上,将翻转课堂应用于物理化学实验教学中。教学过程包括:课前在线学习、线下课堂展示、讨论与实验操作,以及课后巩固与提高。采用定量研究和问卷调查验证了这种教学模式的有效性。研究结果表明,这种教学模式... 在前期混合式教学改革的基础上,将翻转课堂应用于物理化学实验教学中。教学过程包括:课前在线学习、线下课堂展示、讨论与实验操作,以及课后巩固与提高。采用定量研究和问卷调查验证了这种教学模式的有效性。研究结果表明,这种教学模式有助于提高学生的学习成绩,培养学习自主性,激发学习热情,提高课堂参与度。 展开更多
关键词 物理化学实验 翻转课堂 混合式教学
下载PDF
Deep Reinforcement Learning Based Resource Allocation for Fault Detection with Cloud Edge Collaboration in Smart Grid
2
作者 Qiyue Li Yadong Zhu +3 位作者 jinjin ding Weitao Li Wei Sun Lijian ding 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第3期1220-1230,共11页
Real-time fault detection is important for operation of smart grid.It has become a trend of future development to design an anomaly detection system based on deep learning by using the powerful computing power of the ... Real-time fault detection is important for operation of smart grid.It has become a trend of future development to design an anomaly detection system based on deep learning by using the powerful computing power of the cloud.However,delay of Internet transmission is large,which may make the delay time of detection and transmission go beyond the limits.However,the edge-based scheme may not be able to undertake all data detection tasks due to limited computing resources of edge devices.Therefore,we propose a cloud-edge collaborative smart grid fault detection system,next to which edge devices are placed,and equipped with a lightweight neural network with different precision for fault detection.In addition,a sub-optimal and realtime communication and computing resource allocation method is proposed based on deep reinforcement learning.This method greatly speeds up solution time,which can meet the requirements of data transmission delay,maximize the system throughput,and improve communication efficiency.Simulation results show the scheme is superior in transmission delay and improves real-time performance of the smart grid detection system. 展开更多
关键词 Cloud-edge collaboration communication delay deep reinforcement learning fault detection smart grid
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部