期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Regulation characteristics of underlying surface on runoff regime metrics and their spatial differences in typical urban communities across China 被引量:3
1
作者 Yongyong ZHANG jinjin hou +3 位作者 Jun XIA Dunxian SHE Shengjun WU Xingyao PAN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2022年第8期1415-1430,共16页
The regulation and spatial differences of urban runoffs are of great concern in contemporary hydrological research.However,owing to a shortage of basic data sources and restrictions on urban hydrological simulation fu... The regulation and spatial differences of urban runoffs are of great concern in contemporary hydrological research.However,owing to a shortage of basic data sources and restrictions on urban hydrological simulation functions,simulating and investigating the regulation mechanism behind rainfall-runoff processes remain significantly challenging.In this study,the Time Variant Gain Model(TVGM),a hydrological nonlinear system model,was extrapolated to the hydrodynamic model of an urban drainage network system by integrating it with the widely used Stormwater Management Model(SWMM)to adequately simulate urban runoff events while considering various underlying surfaces and runoff routing modes,such as surface,drainage network and river runoff,in urban regions(i.e.,TVGM-SWMM).Moreover,runoff events were characterized using the following four runoff regime metrics:runoff coefficient,capture ratio of annual runoff volume,standardized flood timescale,and the ratio of occurrence time differences between flow and rainfall peak to event duration(peak flow delay time).The characteristics and spatial differences of urban runoff regulations were investigated,and the key impact factors and their relative contributions were identified using multivariate statistical analyses.Four communities were selected as our study areas,consisting of communities from Beijing,Shenzhen,Wuhan,and Chongqing.Our results showed that the TVGM-SWMM performed considerably better than SWMM alone.The comprehensive simulation accuracy of 60%of the events(12/20)improved by 4-86%,with the bias improving the most,followed by the efficiency coefficient.Barring the runoff coefficient,significant spatial differences were identified at the patch scale for the runoff regime metrics,with differences of 0.43,0.22,and 0.16(p<0.05).The key impact factors were the pipe length(r=0.51)in the drainage network system and the forest area ratios(r=0.56),sponge measures(r=0.52),grassland(r=0.48),and impervious surface(r=0.46)in the underlying surfaces.The contributions of the drainage network system and the underlying surfaces were 4.27%and 37.83%,respectively.Regulation in the Beijing community,dominated by grassland regulation,delayed and reduced the peak flow and total runoff volume.In the Shenzhen community,sharp and thin runoff events were mainly generated by impervious surfaces and were not adequately regulated.Forest regulation was the dominant regulation type in the Wuhan community,which reduced the total runoff volume and delayed the peak flow.Waterbody regulation was the primary regulation type in the Chongqing community,which reduced the total runoff volume and peak flow.This study aims to introduce a comprehensive theoretical and technical assessment of the hydrological effects of urbanization and the performance of sponge city construction and provide a reference for urban hydrological model improvements in China. 展开更多
关键词 Runoff event Regime metrics Spatial differences Urban rainfall-runoff model Underlying surface regulation
原文传递
Field-portable ratiometric fluorescence imaging of dual-color label-free carbon dots for uranyl ions detection with cellphone-based optical platform
2
作者 Jingjing Qian Nana Cao +8 位作者 Jian Zhang jinjin hou Qian Chen Cheng Zhang Yudie Sun Shengjun Liu Lifang He Kui Zhang Haibo Zhou 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第11期2925-2928,共4页
Under the public spotlight,uranyl(UO22+)ions has attracted considerable attention for the extreme radioactive and chemical toxicity to ourselves and our environment.Herein,we present a simple and effective ratiometric... Under the public spotlight,uranyl(UO22+)ions has attracted considerable attention for the extreme radioactive and chemical toxicity to ourselves and our environment.Herein,we present a simple and effective ratiometric fluorescence imaging method for the visualizing and quantitative detection UO22+ions by cellphone-based optical platform.The sensing solution was prepared by mixing label-free red carbon dots(r-CDs)and blue carbon dots(b-CDs)together with a fixed photoluminescence intensity ratio of 4:1.When UO22+ions were added,the fluorescence of r-CDs can be selectively quenched,while the fluorescence of b-CDs remains stable without spectral cha nges.With the gradually increase the amounts of UO22+ions,the different response of dual-color CDs resulted in a signification color evolution from deep red to dark purple under the ultraviolet(UV)light illumination.Then,a cellphone-based optical platform was constructed for directly imaging the color change of the samples,and the built-in Colorpicker APP quickly output the red,green and blue(RGB)channel values of these images within one second.Interesting,there was a linear relationship between the ratio of red and blue(R/B)channel values and UO22+ions concentration from 0μmol/L to 30.0μmol/L(R^2=0.92804)with the detection limit of^8.15μmol/L(signal-to-noise ratio of 3).In addition,the optical platform has also been applied to the quantification of UO22+ions in tap water and river water sample.With the advantage of low-cost,portable,easy to operation,we anticipate that this method would greatly improve the accessibility of UO22+ions detection even in resource-limited areas. 展开更多
关键词 Uranyl ions Carbon dots Ratiometric fluorescence Field-portable Cellphone
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部