期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Tailoring the interactions of heterostructured Ni_(4)N/Ni_(3)ZnC_(0.7)for efficient CO_(2)electroreduction
1
作者 Junjie Wang Zhao Li +6 位作者 Zhaozhao Zhu Jinxia Jiang Yulan Li jinju chen Xiaobin Niu Jun Song chen Rui Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期1-7,I0001,共8页
Electrocatalytic CO_(2)reduction into CO has been regarded as one of the most promising strategies for sustainable carbon cycles at ambient conditions,but still faces challenges to achieve both high product selectivit... Electrocatalytic CO_(2)reduction into CO has been regarded as one of the most promising strategies for sustainable carbon cycles at ambient conditions,but still faces challenges to achieve both high product selectivity and large current density.Here,we report a Ni_(4)N/Ni_(3)ZnC_(0.7)heterostructured electrocatalyst embedded in accordion-like N-doped carbon through a simple molten salt annealing strategy.The optimal Ni_(4)N/Ni_(3)ZnC_(0.7)electrocatalyst achieves a high CO Faraday efficiency of 92.3%and a large total current density of-15.8 m A cm^(-2)at-0.8 V versus reversible hydrogen electrode,together with a long-term stability about 30 h.Density functional theory results reveal that the energy barrier for*COOH intermediate formation largely decreased on Ni_(4)N/Ni_(3)ZnC_(0.7)heterostructure compared with Ni_(4)N and Ni_(3)ZnC_(0.7),thus giving rise to enhanced activity and selectivity.A rechargeable Zn-CO_(2)battery is further assembled with Ni_(4)N/Ni_(3)ZnC_(0.7)catalyst as the cathode,which shows a maximum power density of 0.85 mW cm^(-2)and excellent stability. 展开更多
关键词 Interface engineering Ni_(4)N/Ni_(3)ZnC_(0.7) Accordion-like structure CO_(2)electroreduction
下载PDF
Modelling the combined effect of surface roughness and topography on bacterial attachment
2
作者 Subash Bommu Chinnaraj Pahala Gedara Jayathilake +4 位作者 Jack Dawson Yasmine Ammar Jose Portoles Nicholas Jakubovics jinju chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第22期151-161,共11页
Bacterial attachment is a complex process affected by flow conditions,imparted stresses,and the surface properties and structure of both the supporting material and the cell.Experiments on the initial attachment of ce... Bacterial attachment is a complex process affected by flow conditions,imparted stresses,and the surface properties and structure of both the supporting material and the cell.Experiments on the initial attachment of cells of the bacterium Streptococcus gordonii(S.gordonii),an important early coloniser of dental plaque,to samples of stainless steel(SS)have been reported in this work.The primary aim motivating this study was to establish what affect,if any,the surface roughness and topology of samples of SS would have on the initial attachment of cells of the bacterium S.gordonii.This material and bacterium were chosen by virtue of their relevance to dental implants and dental implant infections.Prior to bacterial attachment,surfaces become conditioned by the interfacing environment(salivary pellicle from the oral cavity for instance).For this reason,cell attachment to samples of SS pre-coated with saliva was also studied.By implementing the Extended Derjaguin Landau Verwey and Overbeek(XDLVO)theory coupled with convection-diffusion-reaction equations and the surface roughness information,a computational model was developed to help better understand the physics of cell adhesion.Surface roughness was modelled by reconstructing the surface topography using statistical parameters derived from atomic force microscopy(AFM)measurements.Using this computational model,the effects of roughness and surface patterns on bacterial attachment were examined quantitatively in both static and flowing fluid environments.The results have shown that rougher surfaces(within the sub-microscale)generally increase bacterial attachment in static fluid conditions which quantitatively agrees with experimental measurements.Under flow conditions,computational fluid dynamics(CFD)simulations predicted reduced convection-diffusion inside the channel which would act to decrease bacterial attachment.When combined with surface roughness effects,the computational model also predicted that the surface topographies discussed within this work produced a slight decrease in overall bacterial attachment.This would suggest that the attachment-preventing effects of surface patterns dominate over the adhesion-favourable sub-microscale surface roughness;hence,producing a net reduction in adhered cells.This qualitatively agreed with experimental observations reported here and quantitatively matched experimental observations for low flow rates within measurement error. 展开更多
关键词 Bacterial attachment XDLVO theory Computational modelling Surface topography Surface roughness
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部