Lithium niobate(LiNbO_(3),LN)channel and ridge waveguides have been successfully fabricated by He ion implantation,which has energy of 500 keV and fluence of 1.5×10^(16)ions/cm^(2) and is combined with lithograph...Lithium niobate(LiNbO_(3),LN)channel and ridge waveguides have been successfully fabricated by He ion implantation,which has energy of 500 keV and fluence of 1.5×10^(16)ions/cm^(2) and is combined with lithography and the precise diamond dicing technique.The refractive index profile of the annealed LN planar waveguide was reconstructed.The propagation loss of the channel waveguide with a width of 10μm and that of the ridge waveguides with widths of 25μm and 15μm were investigated by the end-face coupling method.In our work,the factors that affect the waveguide properties of channel and ridge waveguides were revealed.展开更多
We report on the fabrication and optimization of lithium niobate planar and ridge waveguides at the wavelength of 633 nm.To obtain a planar waveguide, oxygen ions with an energy of 3.0 Me V and a fluence of 1.5 ×...We report on the fabrication and optimization of lithium niobate planar and ridge waveguides at the wavelength of 633 nm.To obtain a planar waveguide, oxygen ions with an energy of 3.0 Me V and a fluence of 1.5 × 10^(15) ions=cm^(2) are implanted in the polished face of Li Nb O_(3) crystals. For planar waveguides, a loss of 0.5 d B/cm is obtained after annealing at 300°C for30 min. The ridge waveguide is fabricated by the diamond blade dicing method on optimized planar waveguides. The guiding properties are investigated by prism coupling and end-face coupling methods.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11805142,11205096,and 11874243)the Natural Science Foundation of Shandong Province(No.ZR2020QF086)。
文摘Lithium niobate(LiNbO_(3),LN)channel and ridge waveguides have been successfully fabricated by He ion implantation,which has energy of 500 keV and fluence of 1.5×10^(16)ions/cm^(2) and is combined with lithography and the precise diamond dicing technique.The refractive index profile of the annealed LN planar waveguide was reconstructed.The propagation loss of the channel waveguide with a width of 10μm and that of the ridge waveguides with widths of 25μm and 15μm were investigated by the end-face coupling method.In our work,the factors that affect the waveguide properties of channel and ridge waveguides were revealed.
基金supported by the National Natural Science Foundation of China(Nos.11874243 and 11805142)the Natural Science Foundation of Shandong Province(No.ZR2017MA052)。
文摘We report on the fabrication and optimization of lithium niobate planar and ridge waveguides at the wavelength of 633 nm.To obtain a planar waveguide, oxygen ions with an energy of 3.0 Me V and a fluence of 1.5 × 10^(15) ions=cm^(2) are implanted in the polished face of Li Nb O_(3) crystals. For planar waveguides, a loss of 0.5 d B/cm is obtained after annealing at 300°C for30 min. The ridge waveguide is fabricated by the diamond blade dicing method on optimized planar waveguides. The guiding properties are investigated by prism coupling and end-face coupling methods.