期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
面向双碳目标的自动化和智能化理论与技术
1
作者 柴天佑 钱锋 +10 位作者 管晓宏 丁进良 堵威 徐占伯 杨涛 刘克 何杰 宋苏 赵瑞珍 王志衡 刘屿 《中国科学基金》 CSSCI CSCD 北大核心 2024年第4期560-570,共11页
基于国家自然科学基金委员会第324期双清论坛,本文针对面向双碳目标高耗能工业低碳运行与多介质能源协同减碳调控的国家重大需求,围绕低碳工业智能化和多能互补协同智能调控的自动化与智能化系统理论、关键技术及面向应用层面的基础性问... 基于国家自然科学基金委员会第324期双清论坛,本文针对面向双碳目标高耗能工业低碳运行与多介质能源协同减碳调控的国家重大需求,围绕低碳工业智能化和多能互补协同智能调控的自动化与智能化系统理论、关键技术及面向应用层面的基础性问题,分析了面向双碳目标的自动化和智能化的现状与发展趋势。在低碳工业智能化方面,聚焦工业生产全流程碳排放智能建模方法,低碳工业生产全流程数字化网络化智能化,流程工业低碳绿色制造,制造业异质能源综合利用与优化调控;在多能互补协同智能调控方面,聚焦研究多介质能源转化,多介质能源供给协同调控,多能互补与源储荷调控,能源“源-网-荷-储”一体化决策与综合安全,零碳智慧能源系统的结构化变革,城市智慧能源管控。围绕上述内容,讨论了面临的挑战,给出了凝练的科学问题与主要研究方向,提出了相关的政策建议。 展开更多
关键词 双碳目标 工业智能 高耗能流程工业 多介质能源 低碳运行 协同智能调控
下载PDF
面向工业监控典型监督任务的深度迁移学习方法:现状、挑战与展望 被引量:8
2
作者 柴铮 汪嘉业 +2 位作者 赵春晖 丁进良 孙优贤 《中国科学:信息科学》 CSCD 北大核心 2023年第5期821-840,共20页
基于深度迁移学习的工业监控方法在近年来获得了大量研究关注,特别是在以故障诊断、软测量等为代表的工业监控典型监督任务中.通过挖掘与迁移相似源域的知识来完成对目标域的建模,这类方法为实际工业场景中变工况等原因导致的跨域监控... 基于深度迁移学习的工业监控方法在近年来获得了大量研究关注,特别是在以故障诊断、软测量等为代表的工业监控典型监督任务中.通过挖掘与迁移相似源域的知识来完成对目标域的建模,这类方法为实际工业场景中变工况等原因导致的跨域监控问题提供了新的思路.本文系统梳理了面向工业监控典型监督任务的深度迁移学习方法,并将其分为基于模型迁移、基于样例迁移与基于特征迁移的工业监控方法.在此基础上,对不同类方法的基本研究思想在故障诊断与软测量任务中的研究进展进行了详细阐述.随后,从实际工业场景的复杂欠数据问题、可迁移性的量化与负迁移问题、工业过程的动态特性问题等角度,指出了当前基于深度迁移学习的工业监控研究中存在的挑战,并对该领域的未来研究方向做出进一步展望. 展开更多
关键词 迁移学习 深度学习 跨域工业监控 故障诊断 软测量
原文传递
ConGCNet:Convex geometric constructive neural network for Industrial Internet of Things
3
作者 Jing Nan Wei Dai +1 位作者 Chau Yuen jinliang ding 《Journal of Automation and Intelligence》 2024年第3期169-175,共7页
The intersection of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)has garnered ever-increasing attention and research interest.Nevertheless,the dilemma between the strict resource-constrained n... The intersection of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)has garnered ever-increasing attention and research interest.Nevertheless,the dilemma between the strict resource-constrained nature of IIoT devices and the extensive resource demands of AI has not yet been fully addressed with a comprehensive solution.Taking advantage of the lightweight constructive neural network(LightGCNet)in developing fast learner models for IIoT,a convex geometric constructive neural network with a low-complexity control strategy,namely,ConGCNet,is proposed in this article via convex optimization and matrix theory,which enhances the convergence rate and reduces the computational consumption in comparison with LightGCNet.Firstly,a low-complexity control strategy is proposed to reduce the computational consumption during the hidden parameters training process.Secondly,a novel output weights evaluated method based on convex optimization is proposed to guarantee the convergence rate.Finally,the universal approximation property of ConGCNet is proved by the low-complexity control strategy and convex output weights evaluated method.Simulation results,including four benchmark datasets and the real-world ore grinding process,demonstrate that ConGCNet effectively reduces computational consumption in the modelling process and improves the model’s convergence rate. 展开更多
关键词 Industrial Internet of Things Lightweight geometric constructive neural network Convex optimization Resource-constrained Matrix theory
下载PDF
Prediction method for energy con sumption per ton of fused magnesium furnaces using data driven and mechanism model
4
作者 Dan GUO Zhiwei WU +2 位作者 Tianyou CHAI Jie YANG jinliang ding 《Control Theory and Technology》 EI CSCD 2019年第1期24-36,共13页
The electric energy consumed in every ton of acceptable product, namely energy consumption per ton (ECT), is an important overall index for the production process of a fused magnesium furnace. The furnace is the equip... The electric energy consumed in every ton of acceptable product, namely energy consumption per ton (ECT), is an important overall index for the production process of a fused magnesium furnace. The furnace is the equipment for producing the fused magnesia. The ECT value depends on the current in the smelting process. The optimal operation for a fused magnesium furnace is supposed to have the ECT as low as possible, where the key is to predict ECT accurately. By introducing an unknown high-order non linear term, this paper builds a dynamic ECT model for differe nt production batches based on the static ECT model for one batch. The average current is taken as the input of the dynamic ECT model, which is composed of the unknown high-order nonlinear term and a nonlinear model with unknown parameters. The order of the nonlinear term is determined by the distance correlatio n and the nonlinear term is estimated by the stochastic con figuration n etwork, while the parameters of the non linear model is ide ntified by the least square method. The estimation of the nonli near term alter nates with the parameter identification. This paper proposes a prediction method for ECT, which is composed of the order identification of the non linear term, the alternating identification of the model and the ECT prediction model. The simulation experiments are conducted by the on-site data, and the results verify the effectiveness of the proposed prediction method. 展开更多
关键词 FUSED MAGNESIA ENERGY consumption per ton ALTERNATING identification stochastic configuration network distance correlation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部