期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
拟南芥黏连蛋白RAD21对增强UV-B辐射后细胞分裂的响应 被引量:2
1
作者 贺芳芳 陈慧泽 +3 位作者 冯金林 高琳 牛娇 韩榕 《植物学报》 CAS CSCD 北大核心 2020年第4期407-420,共14页
UV-B辐射对植物的影响体现在多个水平,其会引起植物DNA损伤,造成有丝分裂异常,最终影响植物的生长发育及生理生化过程。RAD21.3是黏连蛋白复合物的一个亚基,参与有丝分裂中染色体的分离。该研究以哥伦比亚生态型拟南芥(Arabidopsis thal... UV-B辐射对植物的影响体现在多个水平,其会引起植物DNA损伤,造成有丝分裂异常,最终影响植物的生长发育及生理生化过程。RAD21.3是黏连蛋白复合物的一个亚基,参与有丝分裂中染色体的分离。该研究以哥伦比亚生态型拟南芥(Arabidopsis thaliana)和atrad21.3突变体为材料,设置对照(CK)及UV-B处理组,对野生型(WT)、atrad21.3及过表达株系的根长、株高、抽薹时间和生理生化指标进行统计分析。利用碱性品红染色观察拟南芥根尖的有丝分裂现象,并统计畸变率。SPSS分析结果表明,UV-B处理后,WT UV-B和atrad21.3 CK的抽薹时间、株高及各项生理生化指标与WT CK相比无显著差异,但atrad21.3UV-B与之相比差异显著。通过烟草(Nicotianabenthamiana)的瞬时表达和亚细胞定位观察,发现RAD21.3集中在细胞核;进一步观察分裂期细胞发现落后染色体、染色体桥和游离染色体等异常现象。统计结果表明,与WT CK相比,WT UV-B和atrad21.3 CK的畸变率较高,但atrad21.3 UV-B的畸变率更高,表明RAD21.3可能响应UV-B辐射诱导的异常有丝分裂。 展开更多
关键词 拟南芥 atrad21.3突变体 UV-B辐射 染色体 有丝分裂
原文传递
氮掺杂石墨烯量子点对拟南芥主根生长方向的影响 被引量:1
2
作者 叶青 闫晓燕 +2 位作者 陈慧泽 冯金林 韩榕 《植物学报》 CAS CSCD 北大核心 2022年第5期623-634,共12页
石墨烯量子点(GQDs)在电化学生物传感器、生物成像和生物医学等领域具有巨大的应用潜力,在公众和环境中的暴露程度也越来越高,近年来其生物安全性备受关注。截至目前,有关石墨烯量子点对植物生长发育影响的研究较少。该文从细胞和分子... 石墨烯量子点(GQDs)在电化学生物传感器、生物成像和生物医学等领域具有巨大的应用潜力,在公众和环境中的暴露程度也越来越高,近年来其生物安全性备受关注。截至目前,有关石墨烯量子点对植物生长发育影响的研究较少。该文从细胞和分子水平探究了氮掺杂石墨烯量子点(N-GQDs)处理对拟南芥(Arabidopsis thaliana)主根生长方向的影响。结果表明,N-GQDs能够被根摄取,并通过维管束运输。50-100 mg·L^(-1) N-GQDs处理可改变主根的生长方向,使其朝着远离培养基的方向发生弯曲。研究发现,N-GQDs处理导致根尖小柱细胞中淀粉粒的积累减少,生长素外排载体PIN3的表达量降低,小柱细胞中的PIN3重新定位到远离培养基一侧的细胞外侧膜(即朝向空气),促进根尖生长素的不对称分布,从而引发主根朝着远离培养基的方向弯曲生长,以避开较高浓度的N-GQDs环境。研究结果为进一步阐明N-GQDs处理改变根生长方向的机制提供了重要线索,同时也为N-GQDs的生物安全性评价提供参考依据。 展开更多
关键词 生长素 氮掺杂石墨烯量子点 PIN3 根生长 淀粉粒
原文传递
SKIP Confers Osmotic Tolerance during Salt Stress by Controlling Alternative Gene Splicing in Arabidopsis 被引量:11
3
作者 jinlin feng dingjing Li +8 位作者 Zhaoxu Gao Yaru Lu Junya Yu Qian Zheng Shuning Yan Wenjiao Zhang Hang He Ligeng Ma Zhengge Zhu 《Molecular Plant》 SCIE CAS CSCD 2015年第7期1038-1052,共15页
Deciphering the mechanisms underlying plant responses to abiotic stress is key for improving plant stress resistance. Much is known about the regulation of gene expression in response to salt stress at the tran- scrip... Deciphering the mechanisms underlying plant responses to abiotic stress is key for improving plant stress resistance. Much is known about the regulation of gene expression in response to salt stress at the tran- scriptional level; however, little is known about this process at the posttranscriptional level. Recently, we demonstrated that SKIP is a component of spliceosome that interacts with clock gene pre-mRNAs and is essential for regulating their alternative splicing and mRNA maturation. In this study, we found that skip-1 plants are hypersensitive to both salt and osmotic stresses, and that SKIP is required for the alter- native splicing and mRNA maturation of several salt-tolerance genes, including NHXl, CBL1, P5CS1, RCl2A, and PATIO. A genome-wide analysis revealed that SKIP mediates the alternative splicing of many genes under salt-stress conditions, and that most of the alternative splicing events in skip-1 involve intron retention and can generate a premature termination codon in the transcribed mRNA. SKIP also controls alternative splicing by modulating the recognition or cleavage of 5' and 3' splice donor and acceptor sites under salt-stress conditions. Therefore, this study addresses the fundamental question of how the mRNA splicing machinery in plants contributes to salt-stress responses at the posttranscriptional level, and provides a link between alternative splicing and salt tolerance. 展开更多
关键词 salt response osmotic tolerance SKIP alternative splicing posttranscriptional regulation
原文传递
The SNW Domain of SKIP Is Required for Its Integration into the Spliceosome and Its Interaction with the Pall Complex in Arabidopsis 被引量:2
4
作者 Yan Li Con qconcl Xia +5 位作者 jinlin feng Dong Yang Fangming Wu Ying Cao Legong Li Ligeng Ma 《Molecular Plant》 SCIE CAS CSCD 2016年第7期1040-1050,共11页
SKIP is a conserved protein from yeasts to plants and humans. In plant cells, SKIP is a bifunctional regulator that works in the nucleus as a splicing factor by integrating into the spliceosome and as a transcriptiona... SKIP is a conserved protein from yeasts to plants and humans. In plant cells, SKIP is a bifunctional regulator that works in the nucleus as a splicing factor by integrating into the spliceosome and as a transcriptional activator by interacting with the Pall complex. In this study, we identified two nuclear localization signals in SKIP and confirmed that each is sufficient to target SKIP to the nucleus. The SNW domain of SKIP is required for both its function as a splicing factor by promoting integration into the spliceosome in response to stress, and its function as a transcriptional activator by controlling its interaction with the Pall complex to participate in flowering. Truncated proteins that included the SNW domain and the N- or C-terminus of SKIP were still able to carry out the functions of the full-length protein in gene splicing and transcriptional activation in Arabidopsis. In addition, we found that SKIP undergoes 26S proteasome-mediated degrada- tion, and that the C-terminus of SKIP is required to maintain the stability of the protein in plant cells. Together, our findings demonstrate the structural domain organization of SKIP and reveal the core domains and motifs underlying SKIP function in plants. 展开更多
关键词 SKIP SPLICEOSOME Pafl complex core domain and motif nuclear localization signal 26Sproteasome-mediated degradation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部