期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Etching‑Induced Surface Reconstruction of NiMoO_(4) for Oxygen Evolution Reaction 被引量:2
1
作者 Jinli Zhu jinmei qian +2 位作者 Xuebing Peng Baori Xia Daqiang Gao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第2期271-282,共12页
Rational reconstruction of oxygen evolution reaction(OER)precatalysts and performance index of OER catalysts are crucial but still challenging for universal water electrolysis.Herein,we develop a double-cation etching... Rational reconstruction of oxygen evolution reaction(OER)precatalysts and performance index of OER catalysts are crucial but still challenging for universal water electrolysis.Herein,we develop a double-cation etching strategy to tailor the electronic structure of NiMoO_(4),where the prepared NiMoO_(4) nanorods etched by H_(2)O_(2) reconstruct their surface with abundant cation deficiencies and lattice distortion.Calculation results reveal that the double cation deficiencies can make the upshift of d-band center for Ni atoms and the active sites with better oxygen adsorption capacity.As a result,the optimized sample(NMO-30M)possesses an overpotential of 260 mV at 10 mA cm−2 and excellent long-term durability of 162 h.Importantly,in situ Raman test reveals the rapid formation of high-oxidation-state transition metal hydroxide species,which can further help to improve the catalytic activity of NiMoO_(4) in OER.This work highlights the influence of surface remodification and shed some light on activating catalysts. 展开更多
关键词 ETCHING Surface reconstruction Cation deficiencies OER
下载PDF
In-situ magnetic field enhanced performances in ferromagnetic FeCo_(2)O_(4) nanofibers-based rechargeable Zinc-air batteries
2
作者 Zhengmei Zhang Lei Jia +4 位作者 Tong Li jinmei qian Xiaolei Liang Desheng Xue Daqiang Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期447-453,I0013,共8页
Field-assisted electrocatalytic reactions are demonstrated to be sufficient strategies in enhancing the electrocatalyst activities for oxygen evolution reaction(OER).Here,we report the in-situ magnetic field enhanced ... Field-assisted electrocatalytic reactions are demonstrated to be sufficient strategies in enhancing the electrocatalyst activities for oxygen evolution reaction(OER).Here,we report the in-situ magnetic field enhanced electrocatalytic activity in ferromagnetic FeCo_(2)O_(4)nanofibers.Our results demonstrate that the overpotential of FeCo_(2)O_(4)nanofibers at 10 mA cm^(-2)shows a left-shift of 40 mV for the OER by applying an external magnetic field,and no obvious change has been observed in the non-ferromagnetic-order Co3O4nanofibers.Calculation results indicate that there are more overlaps between the density of states for Co3d and O 2p by applying an external magnetic field.Accordingly,the spin hybridization of 3d-2p and the kinetics of spin charge transfer are optimized in ferromagnetic FeCo_(2)O_(4),which can promote the adsorption of oxygen-intermediates and electron transfer,significantly improving its electrocatalytic efficiency.What’s more,the maximum power density of the FeCo_(2)O_(4)nanofibers based Zn-air battery(ZAB)increases from 97.3 mW cm^(-2)to 108.2 mW cm^(-2)by applying an external magnetic field,providing a new idea for the application of magnetic cathode electrocatalysts in ZABs. 展开更多
关键词 In-situ magneticfield Oxygen evolution reaction Spin hybridization Zn-air battery
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部