Pulmonary fibrosis(PF)is the pathological structure of incurable fibroproliferative lung diseases that are attributed to the repeated lung injury-caused failure of lung alveolar regeneration(LAR).Here,we report that r...Pulmonary fibrosis(PF)is the pathological structure of incurable fibroproliferative lung diseases that are attributed to the repeated lung injury-caused failure of lung alveolar regeneration(LAR).Here,we report that repetitive lung damage results in a progressive accumulation of the transcriptional repressor SLUG in alveolar epithelial type II cells(AEC2s).The abnormal increased SLUG inhibits AEC2s from self-renewal and differentiation into alveolar epithelial type I cells(AEC1s).We found that the elevated SLUG represses the expression of the phosphate transporter SLC34A2 in AEC2s,which reduces intracellular phosphate and represses the phosphorylation of JNK and P38 MAPK,two critical kinases supporting LAR,leading to LAR failure.TRIB3,a stress sensor,interacts with the E3 ligase MDM2 to suppress SLUG degradation in AEC2s by impeding MDM2-catalyzed SLUG ubiquitination.Targeting SLUG degradation by disturbing the TRIB3/MDM2 interaction using a new synthetic staple peptide restores LAR capacity and exhibits potent therapeutic efficacy against experimental PF.Our study reveals a mechanism of the TRIB3—MDM2—SLUG—SLC34A2 axis causing the LAR failure in PF,which confers a potential strategy for treating patients with fibroproliferative lung diseases.展开更多
The Tribbles(TRIB) family of pseudokinase proteins has been shown to play key roles in cell cycle, metabolic diseases, chronic inflammatory disease, and cancer development. A better understanding of the mechanisms of ...The Tribbles(TRIB) family of pseudokinase proteins has been shown to play key roles in cell cycle, metabolic diseases, chronic inflammatory disease, and cancer development. A better understanding of the mechanisms of TRIB pseudokinases could provide new insights for disease development and help promote TRIB proteins as novel therapeutic targets for drug discovery. At the 2 nd International Symposium on Tribbles and Diseases held on May 7–9, 2018 in Beijing, China, a group of leading Tribbles scientists reported their findings and ongoing studies about the effects of the different TRIB proteins in the areas of immunity, metabolism, fundamental cell biology and cancer. Here, we summarize important and insightful overviews from 4 keynote lectures, 13 plenary lectures and 8 short talks that took place during this meeting. These findings may offer new insights for the understanding of the roles of TRIB pseudokinases in the development of various diseases.展开更多
The cell cycle inhibitor P21 has been implicated in cell senescence and plays an important role in the injury-repair process following lung injury.Pulmonary fibrosis(PF)is a fibrotic lung disorder characterized by cel...The cell cycle inhibitor P21 has been implicated in cell senescence and plays an important role in the injury-repair process following lung injury.Pulmonary fibrosis(PF)is a fibrotic lung disorder characterized by cell senescence in lung alveolar epithelial cells.In this study,we report that P21 expression was increased in alveolar epithelial type 2 cells(AEC2 s)in a time-dependent manner following multiple bleomycin-induced PF.Repeated injury of AEC2 s resulted in telomere shortening and triggered P21-dependent cell senescence.AEC2 s with elevated expression of P21 lost their self-renewal and differentiation abilities.In particular,elevated P21 not only induced cell cycle arrest in AEC2 s but also bound to P300 andβ-catenin and inhibited AEC2 differentiation by disturbing the P300-β-catenin interaction.Meanwhile,senescent AEC2 s triggered myofibroblast activation by releasing profibrotic cytokines.Knockdown of P21 restored AEC2-mediated lung alveolar regeneration in mice with chronic PF.The results of our study reveal a mechanism of P21-mediated lung regeneration failure during PF development,which suggests a potential strategy for the treatment of fibrotic lung diseases.展开更多
基金supported by grants from National Key R&D Program of China(2017YFA0205400)National Natural Science Foundation of China(82173875 to Xiaoxi Lv+3 种基金81973344 and 81673474 to Fang Hua)CAMS Innovation Found for Medical Sciences(2021-I2M-1—026 to Xiaoxi Lv)Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences(2022-JKCS-05 to Xiaoxi Lv)Fundamental Research Funds for the Central Universities(3332019150 to Tingting Zhang)。
文摘Pulmonary fibrosis(PF)is the pathological structure of incurable fibroproliferative lung diseases that are attributed to the repeated lung injury-caused failure of lung alveolar regeneration(LAR).Here,we report that repetitive lung damage results in a progressive accumulation of the transcriptional repressor SLUG in alveolar epithelial type II cells(AEC2s).The abnormal increased SLUG inhibits AEC2s from self-renewal and differentiation into alveolar epithelial type I cells(AEC1s).We found that the elevated SLUG represses the expression of the phosphate transporter SLC34A2 in AEC2s,which reduces intracellular phosphate and represses the phosphorylation of JNK and P38 MAPK,two critical kinases supporting LAR,leading to LAR failure.TRIB3,a stress sensor,interacts with the E3 ligase MDM2 to suppress SLUG degradation in AEC2s by impeding MDM2-catalyzed SLUG ubiquitination.Targeting SLUG degradation by disturbing the TRIB3/MDM2 interaction using a new synthetic staple peptide restores LAR capacity and exhibits potent therapeutic efficacy against experimental PF.Our study reveals a mechanism of the TRIB3—MDM2—SLUG—SLC34A2 axis causing the LAR failure in PF,which confers a potential strategy for treating patients with fibroproliferative lung diseases.
基金supported by National Key R&D Program of China(Grant No.2017YFA0205400,China)the National Natural Science Foundation of China(Grant Nos.81530093 and 81773781,China)+43 种基金Chinese Academy of Medical Sciences(CAMS)Innovation Fund for Medical Sciences(Grant No.2016-I2M-1-007,China)CAMS Central Public-interest Scientific Institution Basic Research Fund(Grant No.2017PT3104,China)supported by grants of the National Natural Science Foundation of China(Grant No.81874316,China)the CAMS Innovation Fund for Medical Sciences(Grant No.2016-I2M-3-008,China)supported by grants of from the BBSRC and NWCR(Grant Nos.1088 and 1097,UK)supported by grants of NSF(Grant No.IOS-1456023,USA)NIH(Grant No.NIH R21 CA197317,USA)supported by grants of Ministry of Education,Singapore(Grant Nos.MOE2014-T2-1-012 and 2012-T1-001-036,Singapore)supported by grants from the Health Research Council of New Zealandsupported by a Rutherford Discovery Fellowship from the New Zealand government administered by the Royal Society of New Zealandsupported by Funda??o para a Ciência e a Tecnologia(FCT)Research Center Grant UID/BIM/04773/2013 Centre for Biomedical Research 1334a research grant from Liga Portuguesa Contra o Cancro–Núcleo Regional do Sul(LPCC/NRS,Portugal)a FCT 2014 research grant SFRH/BPD/100434/2014a Pro Regem grant PD/BD/114258/2016(Portugal)supported by European Marie Sklodowska Curie ITN Project TRAIN-TRIBBLES Research and Innovation Network(Grant No.721532,EU)Innovation Network and the British Heart Foundation(PG/16/44/32146,UK)supported by grants from The Howat Foundation Ltd.(UK),Children with Cancer UK,Bloodwise and the Friends of Paul O'Gorman(UK)supported by grants of P-CREATE from Japan Agency for Medical Research and Developmentsupported by grants from the NIH(NIAID,USA),Alex's Lemonade Stand Foundation(USA)and the Samuel Waxman Cancer Research Foundation(USA)supported by European Marie Sklodowska Curie ITN Project TRAIN-TRIBBLES Research and Innovation Network(Grant No.721532,EU)the "Fondation Centaure"(RTRS),which supports a French transplantation research network,the IHU-Cesti project,the DHU Oncogreffefinancial support managed by the National Research Agency via the"Investment into the Future" program(Grant Nos.ANR-10-IBHU-005and ANR-11-LABX-0016-01,France)supported by Nantes Métropole and Région Pays de la Loire(France)supported by grants of the British Heart Foundation(PG/16/44/32146,UK)supported by European Marie Sklodowska Curie ITN Project TRAIN-TRIBBLES Research and Innovation Network(Grant No.721532,EU)supported by European Marie Sklodowska Curie ITN Project TRAIN-TRIBBLES Research and Innovation Network(Grant No.721532,EU)supported by a joint Ph.D studentship beween the A*Star Institute and the University of Sheffield(UK)supported by funding from the National Institutes of Health National Heart,Lung,and Blood Institute(R01HL141745,USA)supported by European Marie Sklodowska Curie ITN Project TRAIN-TRIBBLES Research and Innovation Network(Grant No.721532,EU)supported by European Marie Sklodowska Curie ITNProject TRAIN-TRIBBLES Research and Innovation Network(Grant No.721532,EU)supported by the National Natural Science Foundation of China(Grant No.81503128,China)CAMS Innovation Fund for Medical Sciences(Grant No.2016-I2M-1-008,China)supported by National Institute of Health(NS R01-035546,USA)supported by the National Natural Science Foundation of China(Grant No.81400140,China)CAMS Innovation Fund for Medical Sciences(Grant No.2016-I2M-1-011,China)supported by European Marie Sklodowska Curie ITN Project TRAIN-TRIBBLES Research and Innovation Network(Grant No.721532,EU)supported by Spanish Ministry of Economy and Competitiveness(MINECO)and Fondo Europeo de desarrollo Regional(FEDER)(Grant No.INNPACTO/IPT-2012-0614-010000,Spain)supported by the National Natural Science Foundation of China(Grant Nos.81400286 and 81530093,China)the CAMS Innovation Fund for Medical Sciences(Grant No.2016-I2M-1-010,China)supported by the National Natural Science Foundation of China(Grant Nos.81472717 and 81673474,China)Beijing Natural Science Foundation(Grant No.7162133,China)the CAMS Innovation Fund for Medical Sciences(Grant No.2016-I2M-1-007,China)supported by the National Natural Science Foundation of China(Grant No.81703564,China)supported by the National Natural Science Foundation of China(Grant No.81603129,China)
文摘The Tribbles(TRIB) family of pseudokinase proteins has been shown to play key roles in cell cycle, metabolic diseases, chronic inflammatory disease, and cancer development. A better understanding of the mechanisms of TRIB pseudokinases could provide new insights for disease development and help promote TRIB proteins as novel therapeutic targets for drug discovery. At the 2 nd International Symposium on Tribbles and Diseases held on May 7–9, 2018 in Beijing, China, a group of leading Tribbles scientists reported their findings and ongoing studies about the effects of the different TRIB proteins in the areas of immunity, metabolism, fundamental cell biology and cancer. Here, we summarize important and insightful overviews from 4 keynote lectures, 13 plenary lectures and 8 short talks that took place during this meeting. These findings may offer new insights for the understanding of the roles of TRIB pseudokinases in the development of various diseases.
基金supported by grants from National Key R&D Program of China(2017YFA0205400)National Natural Science Foundation of China(81773781 to Zhuowei Hu+4 种基金81503128 to Xiaoxi Lv)from CAMS Innovation Found for Medical Sciences(2016-I2M-1-007 to Zhuowei Hu,Fang Hua2016-I2M-1008 to Xiaoxi Lv2016-I2M-1-011 to Ke Li2016-I2M-3-008 to Bing Cui,Shanshan Liu,Jiaojiao Yu,and Jinmei Yu,China)。
文摘The cell cycle inhibitor P21 has been implicated in cell senescence and plays an important role in the injury-repair process following lung injury.Pulmonary fibrosis(PF)is a fibrotic lung disorder characterized by cell senescence in lung alveolar epithelial cells.In this study,we report that P21 expression was increased in alveolar epithelial type 2 cells(AEC2 s)in a time-dependent manner following multiple bleomycin-induced PF.Repeated injury of AEC2 s resulted in telomere shortening and triggered P21-dependent cell senescence.AEC2 s with elevated expression of P21 lost their self-renewal and differentiation abilities.In particular,elevated P21 not only induced cell cycle arrest in AEC2 s but also bound to P300 andβ-catenin and inhibited AEC2 differentiation by disturbing the P300-β-catenin interaction.Meanwhile,senescent AEC2 s triggered myofibroblast activation by releasing profibrotic cytokines.Knockdown of P21 restored AEC2-mediated lung alveolar regeneration in mice with chronic PF.The results of our study reveal a mechanism of P21-mediated lung regeneration failure during PF development,which suggests a potential strategy for the treatment of fibrotic lung diseases.