Catalysis has been regarded as an effective strategy to mitigate sluggish reaction kinetics and serious shuttle effect of Li-S batteries.Herein,a spherical structure consists of ultrathin layered Ti_(3)C_(2)T_(x)-TiN ...Catalysis has been regarded as an effective strategy to mitigate sluggish reaction kinetics and serious shuttle effect of Li-S batteries.Herein,a spherical structure consists of ultrathin layered Ti_(3)C_(2)T_(x)-TiN heterostructures(MX-TiN)through in-situ nitridation method is reported.Through controllable nitridation,highly conductive TiN layer grew on the surface and close coupled with interior MXene to form unique 2D heterostructures.The ultrathin heterostructure with only several nanometers in thickness enables outstanding ability to shorten electrons diffusion distance during electrochemical reactions and enlarge active surface with abundant adsorptive and catalytic sites.Moreover,the(001)surface of TiN is dominated by metallic Ti-3d states,which ensures fast transmitting electrons from high conductive MX-TiN matrix and thus guarantees efficient catalytic performance.Calculations and experiments demonstrate that polysulfides are strongly immobilized on MX-TiN,meanwhile the bidirectional reaction kinetics are catalytically enhanced by reducing the conversion barrier between liquid LiPSs and solid Li_(2)S_(2)/Li_(2)S.As a result,the S/MX-TiN cathode achieves excellent long-term cyclability with extremely low-capacity fading rate of 0.022%over 1000 cycles and remarkable areal capacity of 8.27 mAh cm^(−2) at high sulfur loading and lean electrolytes.展开更多
The NS5A non-structural protein of classical swine fever virus(CSFV)is a multifunctional protein involved in viral genomic replication,protein translation,assembly of infectious virus particles,and regulation of cellu...The NS5A non-structural protein of classical swine fever virus(CSFV)is a multifunctional protein involved in viral genomic replication,protein translation,assembly of infectious virus particles,and regulation of cellular signaling pathways.Previous report showed that NS5A inhibited nuclear factor kappa B(NF-κB)signaling induced by poly(I:C);however,the mechanism involved has not been elucidated.Here,we reported that NS5A directly interacted with NF-κB essential modulator(NEMO),a regulatory subunit of the IκB kinase(IKK)complex,to inhibit the NF-κB signaling pathway.Further investigations showed that the zinc finger domain of NEMO and the aa 126–250 segment of NS5A are essential for the interaction between NEMO and NS5A.Mechanistic analysis revealed that NS5A mediated the proteasomal degradation of NEMO.Ubiquitination assay showed that NS5A induced the K27-linked but not the K48-linked polyubiquitination of NEMO for proteasomal degradation.In addition,NS5A blocked the K63-linked polyubiquitination of NEMO,thus inhibiting IKK phosphorylation,IκBαdegradation,and NF-κB activation.These findings revealed a novel mechanism by which CSFV inhibits host innate immunity,which might guide the drug design against CSFV in the future.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.52225204, 11974074, and 11804048)the Innovation Program of Shanghai Municipal Education Commission (2021-01-07-00-03-E00109)+3 种基金the Fundamental Research Funds for the Central Universities (2232022G-07 and 2232021D-28)Graduate Student Innovation Fund of Donghua University (CUSF-DH-D-2022007)the Program Innovative Research Team in University (IRT_16R13)the International Joint Laboratory for Advanced fiber and Low- dimension Materials (18520750400).
文摘Catalysis has been regarded as an effective strategy to mitigate sluggish reaction kinetics and serious shuttle effect of Li-S batteries.Herein,a spherical structure consists of ultrathin layered Ti_(3)C_(2)T_(x)-TiN heterostructures(MX-TiN)through in-situ nitridation method is reported.Through controllable nitridation,highly conductive TiN layer grew on the surface and close coupled with interior MXene to form unique 2D heterostructures.The ultrathin heterostructure with only several nanometers in thickness enables outstanding ability to shorten electrons diffusion distance during electrochemical reactions and enlarge active surface with abundant adsorptive and catalytic sites.Moreover,the(001)surface of TiN is dominated by metallic Ti-3d states,which ensures fast transmitting electrons from high conductive MX-TiN matrix and thus guarantees efficient catalytic performance.Calculations and experiments demonstrate that polysulfides are strongly immobilized on MX-TiN,meanwhile the bidirectional reaction kinetics are catalytically enhanced by reducing the conversion barrier between liquid LiPSs and solid Li_(2)S_(2)/Li_(2)S.As a result,the S/MX-TiN cathode achieves excellent long-term cyclability with extremely low-capacity fading rate of 0.022%over 1000 cycles and remarkable areal capacity of 8.27 mAh cm^(−2) at high sulfur loading and lean electrolytes.
基金the National Nature Science Foundation of China(Grant No.31972677)the Construction Project of Liaoning Provincial Key Laboratory,China(2022JH13/10200026).
文摘The NS5A non-structural protein of classical swine fever virus(CSFV)is a multifunctional protein involved in viral genomic replication,protein translation,assembly of infectious virus particles,and regulation of cellular signaling pathways.Previous report showed that NS5A inhibited nuclear factor kappa B(NF-κB)signaling induced by poly(I:C);however,the mechanism involved has not been elucidated.Here,we reported that NS5A directly interacted with NF-κB essential modulator(NEMO),a regulatory subunit of the IκB kinase(IKK)complex,to inhibit the NF-κB signaling pathway.Further investigations showed that the zinc finger domain of NEMO and the aa 126–250 segment of NS5A are essential for the interaction between NEMO and NS5A.Mechanistic analysis revealed that NS5A mediated the proteasomal degradation of NEMO.Ubiquitination assay showed that NS5A induced the K27-linked but not the K48-linked polyubiquitination of NEMO for proteasomal degradation.In addition,NS5A blocked the K63-linked polyubiquitination of NEMO,thus inhibiting IKK phosphorylation,IκBαdegradation,and NF-κB activation.These findings revealed a novel mechanism by which CSFV inhibits host innate immunity,which might guide the drug design against CSFV in the future.