The nano-opto-electro-mechanical systems(NOEMS)are a class of hybrid solid devices that hold promises in both classical and quantum manipulations of the interplay between one or more degrees of freedom in optical,elec...The nano-opto-electro-mechanical systems(NOEMS)are a class of hybrid solid devices that hold promises in both classical and quantum manipulations of the interplay between one or more degrees of freedom in optical,electrical and mechanical modes.To date,studies of NOEMS using van der Waals(vdW)heterostructures are very limited,although vdW materials are known for emerging phenomena such as spin,valley,and topological physics.Here,we devise a universal method to easily and robustly fabricate vdW heterostructures into an architecture that hosts opto-electro-mechanical couplings in one single device.We demonstrated several functionalities,including nano-mechanical resonator,vacuum channel diodes,and ultrafast thermo-radiator,using monolithically sculpted graphene NOEMS as a platform.Optical readout of electric and magnetic field tuning of mechanical resonance in a CrOCl/graphene vdW NOEMS is further demonstrated.Our results suggest that the introduction of the vdW heterostructure into the NOEMS family will be of particular potential for the development of novel lab-on-a-chip systems.展开更多
基金This work is supported by the National Key R&D Program of China(2019YFA0307800,2017YFA0304203,and 2018YFA0306900)the National Natural Science Foundation of China(NSFC)(Grants 12004389,11974357,U1932151,and 12174444)+4 种基金L.W.acknowledges support from the Key Research Program of Frontier Sciences,CAS(Grant ZDBS-LY-JSC015)X.Li acknowledges support from the Joint Research Fund of Liaoning-Shenyang National Laboratory for Materials Science with Grant No.2019JH3/30100031D.S.acknowledges the Strategic Priority Research Program of Chinese Academy of Sciences(XDB30000000)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(ZDBS-LY-JSC027,QYZDB-SSW-SLH031)Liaoning Revitalization Talents Program(XLYC1807109)。
文摘The nano-opto-electro-mechanical systems(NOEMS)are a class of hybrid solid devices that hold promises in both classical and quantum manipulations of the interplay between one or more degrees of freedom in optical,electrical and mechanical modes.To date,studies of NOEMS using van der Waals(vdW)heterostructures are very limited,although vdW materials are known for emerging phenomena such as spin,valley,and topological physics.Here,we devise a universal method to easily and robustly fabricate vdW heterostructures into an architecture that hosts opto-electro-mechanical couplings in one single device.We demonstrated several functionalities,including nano-mechanical resonator,vacuum channel diodes,and ultrafast thermo-radiator,using monolithically sculpted graphene NOEMS as a platform.Optical readout of electric and magnetic field tuning of mechanical resonance in a CrOCl/graphene vdW NOEMS is further demonstrated.Our results suggest that the introduction of the vdW heterostructure into the NOEMS family will be of particular potential for the development of novel lab-on-a-chip systems.