期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Preliminary report of the September 5,2022 M_(S) 6.8 Luding earthquake,Sichuan,China 被引量:3
1
作者 Yanru An Dun Wang +12 位作者 Qiang Ma Yueren Xu Yu Li Yingying Zhang Zhumei Liu Chunmei Huang jinrong su Jilong Li Mingxiao Li Wenkai Chen Zhifan Wan Dengjie Kang Baoshan Wang 《Earthquake Research Advances》 CSCD 2023年第1期1-10,共10页
The 2022 M_(S)6.8 Luding earthquake is the strongest earthquake in Sichuan Province, Western China, since the 2017 M_(S)7.0 Jiuzhaigou earthquake. It occurred on the Moxi fault in the southeastern segment of the Xians... The 2022 M_(S)6.8 Luding earthquake is the strongest earthquake in Sichuan Province, Western China, since the 2017 M_(S)7.0 Jiuzhaigou earthquake. It occurred on the Moxi fault in the southeastern segment of the Xianshuihe fault, a tectonically active and mountainous region with severe secondary earthquake disasters. To better understand the seismogenic mechanism and provide scientific support for future hazard mitigation, we summarize the preliminary results of the Luding earthquake, including seismotectonic background, seismicity and mainshock source characteristics and aftershock properties, and direct and secondary damage associated with the mainshock.The peak ground displacements in the NS and EW directions observed by the nearest GNSS station SCCM are ~35 mm and ~55 mm, respectively, resulting in the maximum coseismic dislocation of 20 mm along the NWW direction, which is consistent with the sinistral slip on the Xianshuihe fault. Back-projection of teleseismic P waves suggest that the mainshock rupture propagated toward south-southeast. The seismic intensity of the mainshock estimated from the back-projection results indicates a Mercalli scale of Ⅷ or above near the ruptured area,consistent with the results from instrumental measurements and field surveys. Numerous aftershocks were reported, with the largest being M_(S)4.5. Aftershock locations(up to September 18, 2022) exhibit 3 clusters spanning an area of 100 km long and 30 km wide. The magnitude and rate of aftershocks decreased as expected, and the depths became shallower with time. The mainshock and two aftershocks show left-lateral strike-slip focal mechanisms. For the aftershock sequence, the b-value from the Gutenberg-Richter frequency-magnitude relationship, h-value, and p-value for Omori’s law for aftershock decay are 0.81, 1.4, and 1.21, respectively, indicating that this is a typical mainshock-aftershock sequence. The low b-value implies high background stress in the hypocenter region. Analysis from remote sensing satellite images and UAV data shows that the distribution of earthquake-triggered landslides was consistent with the aftershock area. Numerous small-size landslides with limited volumes were revealed, which damaged or buried the roads and severely hindered the rescue process. 展开更多
关键词 Luding earthquake Moxi fault Aftershock statistics Earthquake disasters Intensity map
下载PDF
Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning,south Sichuan Basin, China 被引量:28
2
作者 XingLin Lei ZhiWei Wang jinrong su 《Earth and Planetary Physics》 CSCD 2019年第6期510-525,共16页
Late at night on 17 June 2019,a magnitude 6.0 earthquake struck Shuanghe Town and its surrounding area in Changning County,Sichuan,China,becoming the largest earthquake recorded within the southern Sichuan Basin.A ser... Late at night on 17 June 2019,a magnitude 6.0 earthquake struck Shuanghe Town and its surrounding area in Changning County,Sichuan,China,becoming the largest earthquake recorded within the southern Sichuan Basin.A series of earthquakes with magnitudes up to 5.6 occurred during a short period after the mainshock,and we thus refer to these earthquakes as the Changning M6 earthquake sequence(or swarm).The mainshock was located very close to a salt mine,into which for^3 decades fresh water had been extensively injected through several wells at a depth of 2.7–3 km.It was also near(within^15 km)the epicenter of the 18 December 2018 M5.7 Xingwen earthquake,which is thought to have been induced by shale gas hydraulic fracturing(HF),prompting questions about the possible involvement of industrial activities in the M6 sequence.Following previous studies,this paper focuses on the relationship between injection and seismicity in the Shuanghe salt field and its adjacent Shangluo shale gas block.Except for a period of serious water loss after the start of cross-well injection in 2005–2006,the frequency of earthquakes shows a slightly increasing tendency.Overall,there is a good correlation between the event rate in the Shuanghe area and the loss of injected water.More than 400 M≥3 earthquakes,including 40 M≥4 and 5 M≥5 events,had been observed by the end of August 2019.Meanwhile,in the Shangluo area,seismicity has increased during drilling and HF operations(mostly in vertical wells)since about 2009,and dramatically since the end of 2014,coincident with the start of systematic HF in the area.The event rate shows a progressively increasing background with some fluctuations,paralleling the increase in HF operations.More than 700 M≥3 earthquakes,including 10 M≥4 and 3 M≥5 in spatially and temporally clustered seismic events,are correlated closely with active fracturing platforms.Well-resolved centroid moment tensor results for M≥4 earthquakes were shown to occur at very shallow depths around shale formations with active HF,in agreement with some of the clusters,which occurred within the coverage area of temporary or new permanent monitoring stations and thus have been precisely located.After the Xingwen M5.7 earthquake,seismic activity in the salt well area increased significantly.The Xingwen earthquake may have created a unidirectional rupture to the NNW,with an end point close to the NW-trending fault of the Shuanghe earthquake.Thus,a fault in the Changning anticline might have terminated the fault rupture of the Xingwen earthquake,possibly giving the Xingwen earthquake a role in promoting the Changning M6 event. 展开更多
关键词 Changning EARTHQUAKE injection-induced EARTHQUAKE deep WELL INJECTION hydraulic FRACTURING salt WELL mine SHALE gas
下载PDF
Spatial-temporal evolution of injection-induced earthquakes in the Weiyuan Area determined by machine-learning phase picker and waveform cross-correlation 被引量:11
3
作者 Wing Ching Jeremy Wong JinPing Zi +1 位作者 HongFeng Yang jinrong su 《Earth and Planetary Physics》 CSCD 2021年第6期485-500,共16页
Anthropogenic induced seismicity has been widely reported and investigated in many regions,including the shale gas fields in the Sichuan basin,where the frequency of earthquakes has increased substantially since the c... Anthropogenic induced seismicity has been widely reported and investigated in many regions,including the shale gas fields in the Sichuan basin,where the frequency of earthquakes has increased substantially since the commencement of fracking in late 2014.However,the details of how earthquakes are induced remain poorly understood,partly due to lack of high-resolution spatial-temporal data documenting the evolution of such seismic events.Most previous studies have been based on a diffusive earthquake catalog constructed by routine methods.Here,however,we have constructed a high resolution catalog using a machine learning detector and waveform cross-correlation.Despite limited data,this new approach has detected one-third more earthquakes and improves the magnitude completeness of the catalog,illuminating the comprehensive spatial-temporal migration of the emerging seismicity in the target area.One of the clusters clearly delineates a potential unmapped fault trace that may have led to the Mw 5.2 in September 2019,by far the largest earthquake recorded in the region.The migration of the seismicity also demonstrates a pore-pressure diffusion front,suggesting additional constraints on the inducing mechanism of the region.The patterns of the highly clustered seismicity reconcile the causal link between the emerging seismicity and the activity of hydraulic fracturing in the region,facilitating continued investigation of the mechanisms of seismic induction and their associated risks. 展开更多
关键词 hydraulic fracturing Sichuan Basin machine learning injection-induced earthquake Weiyuan earthquake
下载PDF
Large slip rate detected at the seismogenic zone of the 2008 M_W7.9 Wenchuan earthquake 被引量:2
4
作者 Qifu Chen Le Li +1 位作者 Fenglin Niu jinrong su 《Earthquake Science》 CSCD 2011年第1期101-106,共6页
Repeating microearthquakes were identified along the edge of the rupture area of the 2008 MW7.9 Wenchuan earthquake. Slip rates at depths derived from seismic moments and recurrence intervals are found to be systemati... Repeating microearthquakes were identified along the edge of the rupture area of the 2008 MW7.9 Wenchuan earthquake. Slip rates at depths derived from seismic moments and recurrence intervals are found to be systematically larger than those observed at surface. This large deep slip rate may explain the odds about the occurrence of this unanticipated event. Our observations here suggested that seismic hazard could be underestimated if surface measurements alone are employed. 展开更多
关键词 deep slip rate repeating microearthquake Wenchuan earthquake
下载PDF
Fluid-driven seismicity in relatively stable continental regions:Insights from the February 3^(rd),2020 M_(S)5.1 Qingbaijiang isolated earthquake 被引量:2
5
作者 Xinglin Lei Jianbao sun jinrong su 《Earthquake Research Advances》 CSCD 2021年第1期19-24,共6页
On February 3rd,2020,an isolated MS5.1 earthquake occurred in the northern section of the Longquanshan fault zone.This study aims at defining the geometry of seismogenic structures of this earthquake.In detail,centroi... On February 3rd,2020,an isolated MS5.1 earthquake occurred in the northern section of the Longquanshan fault zone.This study aims at defining the geometry of seismogenic structures of this earthquake.In detail,centroid moment tensor inversion results show that the earthquake is characterized by a focal depth of 3.8 km with no corresponding surface faults.The strike/dip/rake angles for the two nodal planes are 205°/54°/96°and 15°/36°/82°,respectively.With the analyses of coseismic deformation of the surface obtained from InSAR measurements,together with the information of relocated hypocenters for a small number of aftershocks,it is concluded that a northwest-dipping nodal plane corresponds well to the source fault.The fault is suggested to have a length of about 2.8 km and a depth range of 2-5 km,and the centroid of the earthquake is located at 104.48°E and 30.71°N.Furthermore,multiple pieces of evidence indicate that this earthquake is partly driven by the overpressure effect associated with the adjacent natural gas packets,which is similar to several other moderate natural earthquakes in Sichuan Basin. 展开更多
关键词 Isolated earthquake InSAR Deep fluid Fault valve Sichuan Basin
下载PDF
Depth determination of the Moho interface beneath the Tibetan plateau and other areas of China
6
作者 Youshun sun Diming Yu +4 位作者 M Nafi Toksz F Dale Morgan Xiyu Wang jinrong su Jun Liu 《Earthquake Science》 CSCD 2012年第5期415-431,共17页
We apply the adaptive moving window method of Sun et al. to the most recent catalog data and the data recorded by portable stations to construct the velocity structure of the crust and upper mantle, and to determine t... We apply the adaptive moving window method of Sun et al. to the most recent catalog data and the data recorded by portable stations to construct the velocity structure of the crust and upper mantle, and to determine the depth of the Moho interface beneath the Tibetan plateau and other areas of China. We first select 2 600 locations in the study region with 1° intervals, then at each location invert for a five-layer 1-D P-wave velocity model from the surface down to the uppermost mantle by performing a Monte Carlo random search. The Moho depth at each location is then determined, and the Moho interface beneath the study region is obtained through proper interpolation with certain smoothing. Compared to depths obtained by previous studies, our results show more accurate Moho depths in the Tibetan plateau, Tianshan region and other areas of the study region. 展开更多
关键词 Moho depth Moho interface Tibetan plateau
下载PDF
Complex dynamics of repeating and river-blocking landslides in Jiangda during 2018
7
作者 Wenying Li Yong Zhang +5 位作者 Yueyi Xu Xujun Zheng Rongjiang Wang jinrong su Guixi Yi Qinghua Huang 《Earthquake Science》 2021年第1期3-14,共12页
Two large landslides successively blocked the Jinsha River at the same location in Jiangda Village on October 10 and November 3,2018,respectively.The dynamic processes and possible interactions of the two landslides n... Two large landslides successively blocked the Jinsha River at the same location in Jiangda Village on October 10 and November 3,2018,respectively.The dynamic processes and possible interactions of the two landslides need to be studied to better understand the physical processes involved,and to provide information on future disaster mitigation.We investigated their force histories and sliding directions by inverting regional broadband seismograms.The scale of the October landslide was approximately three times that of the November event.The October event revealed a particularly strong deceleration force,which may have been caused by a collision between the sliding mass and ground surface.In contrast,the November event had a relatively weaker deceleration force,indicating that it may have been gradually stopped by the landslide dam formed during the October landslide.The sliding directions of the two landslides differed significantly in terms of both horizontal and vertical directions,indicating a change in their sliding surfaces.We conclude that unconsolidated materials at the top of the October landslide continued sliding along a curved slope during the November event.From our seismic models of dynamic processes,both the October landslide and local background may have affected and even changed a subsequent landslide’s mechanism. 展开更多
关键词 LANDSLIDES waveform inversion FRICTION non-tectonic earthquake inversion
下载PDF
Growing seismicity in the Sichuan Basin and its association with industrial activities 被引量:37
8
作者 Xinglin LEI jinrong su Zhiwei WANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2020年第11期1633-1660,共28页
In the Sichuan Basin,seismic activity has been low historically,but in the past few decades,a series of moderate to strong earthquakes have occurred.Especially since 2015,earthquake activity has seen an unprecedented ... In the Sichuan Basin,seismic activity has been low historically,but in the past few decades,a series of moderate to strong earthquakes have occurred.Especially since 2015,earthquake activity has seen an unprecedented continuous growth trend,and the magnitude of events is increasing.Following the M5.7 Xingwen earthquake on 18 Dec.2018,which was suggested to be induced by shale gas hydraulic fracturing,a swarm of earthquakes with a maximum magnitude up to M6.0 struck Changning and the surrounding counties.Questions arose about the possible involvement of industrial actions in these destructive events.In fact,underground fluid injection in salt mine fields has been occurring in the Sichuan Basin for more than70 years.Disposal of wastewater in natural gas fields has also continued for about 40 years.Since 2008,injection for shale gas development in the southern Sichuan Basin has increased rapidly.The possible link between the increasing seismicity and increasing injection activity is an important issue.Although surrounded by seismically active zones to the southwest and northwest,the Sichuan Basin is a rather stable region with a wide range of geological settings.First,we present a brief review of earthquakes of magnitude 5 or higher since 1600 to obtain the long-term event rate and explore the possible link between the rapidly increasing trend of seismic activity and industrial injection activities in recent decades.Second,based on a review of previous research results,combined with the latest data,we describe a comprehensive analysis of the characteristics and occurrence conditions of natural and injection-induced major seismic clusters in the Sichuan Basin since 1700.Finally,we list some conclusions and insights,which provide a better understanding of why damaging events occur so that they can either be avoided or mitigated,point out scientific questions that need urgent research,and propose a general framework based on geomechanics for assessment and management of earthquake-related risks. 展开更多
关键词 Induced seismicity Fluid injection Sichuan Basin Shale gas Wastewater disposal Salt mine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部