期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Comparisons of MFDFA, EMD and WT by Neural Network, Mahalanobis Distance and SVM in Fault Diagnosis of Gearboxes 被引量:2
1
作者 jinshan lin Chunhong Dou Qianqian Wang 《Sound & Vibration》 2018年第2期12-16,共5页
A method for gearbox fault diagnosis consists of feature extraction andfault identification. Many methods for feature extraction have beendevised for exposing nature of vibration data of a defective gearbox. Inadditio... A method for gearbox fault diagnosis consists of feature extraction andfault identification. Many methods for feature extraction have beendevised for exposing nature of vibration data of a defective gearbox. Inaddition, features extracted from gearbox vibration data are identifiedby various classifiers. However, existing literatures leave much to bedesired in assessing performance of different combinatorial methods forgearbox fault diagnosis. To this end, this paper evaluated performance ofseveral typical combinatorial methods for gearbox fault diagnosis byassociating each of multifractal detrended fluctuation analysis (MFDFA),empirical mode decomposition (EMD) and wavelet transform (WT) witheach of neural network (NN), Mahalanobis distance decision rules(MDDR) and support vector machine (SVM). Following this,performance of different combinatorial methods was compared using agroup of gearbox vibration data containing slightly different faultpatterns. The results indicate that MFDFA performs better in featureextraction of gearbox vibration data and SVM does the same in faultidentification. Naturally, the method associating MFDFA with SVMshows huge potential for fault diagnosis of gearboxes. As a result, thispaper can provide some useful information on construction of a methodfor gearbox fault diagnosis. 展开更多
关键词 MULTIFRACTAL detrended fluctuation analysis support vectormachine fault diagnosis GEARBOX
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部